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Department of Commerce, Washington 25, D. C., in stock quantities for sale to
-the general public.

2

tptomberdy,:

')
Y .

N
.

et 2 2l
-ty -‘1.‘\1“ 4

X“l »
| L ROL R S

Copies of this report should not be returned to the Aeronautical Systems
Division unless return is required by security considerations, contractual
obligations, or notice on a specific document.

-

X

L0=462M, 1630, 2-27-53

© e AN i & o

P x
Y




ASD-TDR-62-812

,.—‘:ﬂ'.'”
v e
T,

PR
O
Ay
’

G
oy
et

FOREWORD

~ges oo
By

’

'

G

g

This report represents one phase of an analytical investigation of handling
qualities for multiloop airframe—human pilot systems. The research reported
was sponsored by the Flight Control ILaboratory, Aeronautical Systems Division,
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ABSTRACT

Two related facets of feedback system analysis are considered—the
calculation of closed-loop response and the determination of the effects
on closed-loop behavior of variations in opsn-loor parameters. The con-
nection between the modal response coefficients (partial fraction expan-
sion coefficients of the closed-loop trarsfer function), the sensitivity
of the closed-loop poles to variations in the open-locp gains, poles, and
zeros, and classical sensitivity are developed. A comprehensive summary
is given of methods for determiring modal response coefficients and
sensitivities from open- or closed-loop transfer function representation.
Response formulas for periodic cr power series inputs are derived in
terms of the modal response coefficients, with conveational error coeffi-
cients as a special case. The initizl developments zre for single-loop
systems with first-order closed-loop poles; these zre extended to cover
multiple-order closed-loop poles, znd generzlized tc multiloop systems.
Examples are given using jw, &, 5, and shifted Bode plots, root locus,
and analytical transfer function representations.
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SYMBOLS

Real part of z or p
Coefficient of s2~¥ in numerator of G(s) when G(s) is in root-locus form
Amplitude of cos ayt input

Lmplitude of G(s)

Bode-form numerator of G(s)

Closed-loop Bode amplitude asymptote

Root-locus gain of Hg

Derivative 3V log A/d(Log 1) in ab/(dec)V

Root-locus gain of 6y

Imaginary part of z or p

sm+n-k

Coefficient of in denominator of G(s) when G(s) is in root-locus

form
Amplitude of sin wt input
Bode-form denominator of G(g)
System output

"%% +‘bg
Distance imaginary axis is shifted to the left
Coefficient of tY/M! input
Error, r(t) - c(t)
Error coefficient
Nunmerator of closed-loop transfer function
Denominator term of closed-loop transfer function (denominator is 14-F2)
Open-loop transfer function

Controller transfer function
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Grc

Gre
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Q" (s)
r(t)

Feedback transfer function
Pransfer function of kth element in multiloop system
Closed-loop output/input transfer function
Closed-loop error/input transfer function
Altitude
Index
Altitude/elevator transfer function
Index
System response to unit step input
Index
‘/?T
Index
Number of free s's in denominator of G(s)
Bode gain of G(s)
Number of transfer functions in multiloop system
Inverse laplace transform
Number of poles of G(s) minus number of zeros
Index for power series inputs
Number of zeros of G(s)
Order of closed-loop pole
Noise
Negative of open-loop pole
Negative of closed-loop pole
Modal-response coefficient
See Eq 8, 98, and 166
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R Radius of curvature of € plot
R Response coefficient
{'4 5 Iaplace transform variable
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% Time (o
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:'3_ 1/24 See Eq 194
LA NN
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u(t) Unit step at t = 0 {5
'~ ": \ ;’J I
el Ca
: w(t) System weighting function (response to unit impulse input) §'33
Y Controlled-element transfer function E:}g
!'.‘:\:.;
Yy Altimeter transfer function Fﬂﬁ
Ys Elevator-servo transfer function _%G&
.E‘.A’:-'fa
Yg Equalization of pitch attitude feedback o
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Z Negative of open-loop zero 3H3
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e a Numerator polynomial of G(s) [aine]
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K Root-locus gain of G(s)
KoL, Root-locus gain of closed-loop transfer function
)\q Number of closed-loop poles of smaller magnitude than g;
P Number of right-half-plane zeros and unstable closed-loop poles of ,__’,j 7
larger magnitude than g;, plus one if k/(1 + x89) < 0 R
4oy
)_xz Number of open-loop zeros of smaller magnitude than q; m
1 Magnitude of s §~., 2
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3 Real part of s divided by magnitude of s N
o Real part of s
T Durmy variable of integration
Q Phase of G(s)
. . N N . N
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SECTION I

INTRODUCTION

A. GENERAL LINEAR SYSTEM ANALYSIS PROBLEM

1. The Analysis Froblem Defined

In this report detailed consideration is given to two major facets of
feedback system analysis—the effects of component variations on system transter
functions, and the connection between transfer function characteristics and
system time responses. For constant-coefficient linear systems typified by the
single-loop system shown in Fig. 1, the system analysis problem shall be con-

sidered here to consist of five essential steps:

a. Delineation of nominal open-loop system characteristics.
This step ordinarily starts with differential equations
describing the nominal controlled-element characteristics
and one or more controller possibilities. The step is
concluded when one or more nominal open-loop transfer
functions, G(s), are available, in factored form, for
further analysis.

b. Determingtion of nominal closed-loop transfer functioms,
Gpo(s) and Gp(s), from the open-loop transfer function(s).

c. Calculation of closed-lcop system time responses for
pertinent inputs.

d. Determination of the changes in G(s) resulting from the
expected variations in the controller and controlled-
element charecteristics.

e. Consideration of the effects of open-loop system variations
on closed-loop behavior.

The major topics covered in this report are concerned with steps c and e,
although desirable techniques to accomplish steps ¢ and e are somewhat dependent

on the methods used in steps a and b.

Original manuscript submitted August 1962; revised manuscript released by
authors November 1962 for publication as an ASD Technical Documentary Report.
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Delineating the open-loop characteristics in terms of a transfer function

(]
.l,"

ey mgeeys
RJ

G(s) is extremely simple for time-invariant linear systems because transform

methods can be used to convert the system differential equations to algebraic

s ® 0
.

B |

equations. This conversion permits the intermediate steps in an analysis

sequence (e.g., reduction of simultaneous equations using Cramer's rule, t«:
transfer function development and manipulation) to be carried out using 2-"
algebraic forms. Most such forms are rational polynomials, and the remainder E'.
can usually be approximated by this type of function. Thus, with the possible i;:_;
exception of polynomial factoring (which also enters step b), the delineation *‘E;
of open-loop transfer functions in *he form indicated in Fig. 1 is basically ;:\
elementary, as is the extension to similar open-loop transfer functions in §“:‘
multiloop systems. hﬁ%
=

The second step in the analysis sequence, i.e., given G(s), find Gyp.(s) ‘E:-*

and /or Gre(s) , 1s the central problem of feedback systems analysis. Trivial as E"-

)

it may seem, amounting only to finding roots of 1 + G(s) = O when G(s) is given,
a great deal of effort has been devoted to finding better methods for performing

this operation. An eclectic view of this step, for single-lcop systems, is =~

e,

presented in Ref. 1. Various representations of the open-loop transfer function ;\:#.

(such as G(jw), G(xc), and G(t,u) Bode plots and pole-zero locations) are used E‘;

.;‘1} there as part of a unified combination of methods to find closed-loop transfer gi;%
functions in factored form. The techniques of Ref. 1 have also been extended to {.::

e,
e

multiloop systems in Ref. 2.

. ",I .'i ﬂ;'f”

2. System Time Response Behavior

(ool e Jond |
{VI, s_X
RNE S B

e PN 1
l’ l,‘ I'

B0

When closed-loop transfer functions are available in factored form step c¢

is, in principle, an elementary inversion process from the transform to the time

domain. The major operation involved can again be algebraic, e.g., the system
response to a unit impulse input requires the resolution of the transfer function ‘{
. . K
Grc(s) into a partial fraction series. This algebraic operation is then followed 1‘-1
i
with term-by-term inversion to the time domain. Thus, using the G..(s) form i:&‘
shown in Fig. 1 (for m > 1), 3‘
n 5
N
k I (s + zj3) f\:‘
Jj=1 r\‘:
Gpals) = A
re(s) min 53‘2
I (s+aq) Ul
= =
ne
3 gl
S}vv
r:‘:-
R A T e e S o R T I A T T R R v PN v = e e m e o e e e ;:."’.
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The first step is to resolve Gp.(s) into partial fractions which, assuming that
there are no repeated closed-loop poles, results in

.
syuageogaty
» 4

4 -
Grc(s) = li: _El.._

i1 579

M ACIN
KR

A S
()

[t
Ay

Then, inverse transforming,

e 1Y

oy
)

-1 m¥n t
,C [Grc(s)J = 2 Qie-qi

i=l

Y’{ﬂ‘ ""::::1 )

e
oy 8,

gives the system time response to the unit impulse input.
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Standard procedures for finding the modal response coefficients—the Q;'s

ey
+

above—are routine but tedious. Techniques for finding the modal response
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coefficients from the open-loop transfer function G(s) are available buf not

"l';t"
’

too well known. So, the analyst often stops when G,.(s) is known in factored gi
form, secure in the knowledge that the time variation portions (the e %t E;
terms) of the 3ystem response are defined by the g; 's appearing explicitly in %;
the closed-loop transfer functions, and that the relative magnitudes of these g;
time variations (the Qi's) are indicated there implicitly. Much of this report EE
is devoted to developments and methods which provide the modal response coeffi-~ £

cients directly from the open- and/or closed-loop transfer function representa-

ST

tions used in the second step of the general analysis procedure. Using these

Bt

N

methods, the process of finding modal response coefficients (and system time ?:
responses) becomes a mere adjunct to the second step rather than a separate, &?
often neglected, stage in analysis. Further, by extending the techniques to gé
=~

multiloop systems, the third step in the general analysis problem gains the %@
same status of completeness as the first two already possess. %%
N

3. System Sensitivity to Parameter Variations g;
S

One reason for the fifth step (effects of component variations on system {7
characteristics) is obvious—the system assumed in an analytical study will &:
L

never precisely match the actual physical system, so it is important to know %;
s
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the effects of possible variations. A second, more subtle reason is that a

genzral inowisdge of the effects of parameter changes can be used as a guide to

sysiem modifications which would improve the over-all performance. For both of

1oy
rfr:‘t

LI Y

these reasons measures of closed-loop sysiem sensitivity to open-loop system

parameter variations are an integral part of the analysis problem.

Hlotions about systiem sensitivity were in the forefront when the feedback
concept was initially developed. This was natural, even unavoidable, since
feedback systems possess the "fundamental physical property that the effects of
variation in the forward loop, whether they are taken as changes in G(s) or as
departures from strict linearity or from freedom from exiraneous noise, are
reduced by the factor 1 + G in comparison with the effects whichk would be
observed in a non-feedback system.™™ Accordingly, sensitivity measures were
indispensable to any rational discussion of feedback systems, and a useful,

classical definition of sensitivity was made one of the two mathematical defini-

tions of feedback (Ref. 3). Except for a minor modification (Ref. 4) this =]
definition, by Bode (Ref. 3), remained unchanged for over a decade. Perhaps S??
this static nature, surrounded by dynamic growth in most other areas of feedback 253
systems engineering, made the concept fade—in any event, whole cadres of Egg
neophyte systems engineers were trained with precious little exposure to sensi- éié

tivity concepts. In recent years classic sensitivity has become a more popular
subject in automatic control (Ref. 4 and 5). Finally, the emphasis on pole-zero
specifications for system characteristics gave rise to new conceptions of sensi-

tivity, with associated new measures. These, called here “"gain," "(open-loop)
pole,”" and "(open-loop) zero" sensitivities, were evolved to account for changcs

in the position of closed-loop poles due to shifts or changes in open-loop gain,

poles, or zeros. A number of thesis studies and research efforts, such as those

. . . . . =

reported in Ref. 6 - 13, have gone a long way toward bringing this subject to a o
logical conclusion. N
o

In the simplest terms, sensitivity relationships connect open-loop differen- )

0

tial variations with closed-loop pole differential shifts. Thus, the differential e
o

O
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- .:,‘}

aisl]

5 ;":1":-

A 4

s

!

g d

. :r*;-\. " ,!“. SN LR Y PR AP AN N T R AT AN a e e ms e s L s oy v o vt (AT A dm a4 - > '_'-'
T A e S I T T e S s T




T

~
.

s

£

:-—_'-.‘

shift of a closed-loop pole is given by e
o

ey

N

n . min o

idk i i o,

dgg = Sy—+ 3, S, dzs + 2, S dp; =

21 < < =

S = R = BRI o

i

where the ST factors are Tirst-order sensitivities and the differentials dz 52 P

e
Yy
.

dpj , and dk may be interpreted as incremental changes in the open-loop parame-

ters.” The gain sensitivity, Sk, is basic, since the pole and zero sensitivities

A g
.l,ﬂ'r!;
1%

can be related to it, and since it is a component of the classical sensitivity.

v,
3
»
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When the sensitivity factors are known, they may be combined with the results :._,;:

of the fourth step in the general analysis sequence (estimates for k, 23, and P; ?
uncertainties) to provide tolerances on the closed-loop roots. Further, a i
knowledge cf the st values , and of their connection with system parameters, can 5\:
lead to system changes which minimize the system variations to element deviations. SN

Vel

Pl

Sensitivities can also be very useful in the synthesis problem. Once a

trial controller has been formed, the sensitivities permit the designer to

»
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estimate what changes he should make in the controller to obtain a more desirable

a8

set of nominal closed-loop poles. This approach is particularly beneficial for

multiloop systems where the effects of inner-loop parameters on the fim.l closed- t_\\_%-

* loop poles are frequently obscure. g‘::\
:3 Sensitivities also have great value when a digital computer is used as the E_;
by prime means of control analysis. By extending the program to compute sensitivi- }_E”;..:‘
ties, the designer can use a manual or automatic iteration scheme to "home in“ ;’x’

on the best controller rather than doing a costly parametric investigation of HENY

all the controller parameters.

¥}

On the surface, steps ¢ and e of the analysis problem appear to be separate g"_‘"

and distinct. However, there is a strong tie between the two—the gain g
Lot

N

B

Note that in a strict mathematical sense the closed-loop poles are -gq;, the %_,
open-loop zeros are -z, and the open-loop poles are -p:. The notation used in beae
this report (Fig. 1) has been chosen to agree with a standard servoanalysis k"
convention which has transfer function factors as (s + zj) and (s + pj) . Ly
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sensitivities being, in fact, equal to the modal response coefficients for
single-loop systems with single-order poles. This close connection provides
additional methods for the calculation of modal response coefficients and gain
sensitivities from the ccrventional open- and closed-loop system representations.
These methods can also be extended to multiloop situations where sensitivity
concepts should ultimately be very helpful in reducing to well-understood terms

the many puzzling interactions present.

B. OUTLINE OF THE REPORT

{

The remainder of this report is organized into four sections (II through V). 4

The basic relationships for modal response coefficients and sensitivities for ;il

single-loop systems are developed in Section II. Several methods for evaluating )

fm

the modal response coefficients and sensitivities are derived in Section III. T

T4 b

] Section IV extends the developments to multiloop systems, and Section V summa- s

a rizes the important results. égé

55 The developments of Section II begin with the modal response coefficients P

for single-order closed-loop polec. The connections between the modal response Eﬁf

N

coefficients and the closed-loop responses for simple inputs are developed. e

el

Then the sensitivities and their relationship to the modal response coefficients §§§

I

and classical sensitivity are de.ived. The final article contains the modifica- g;i

L)

tions and extensions to the above which are necessary for systems with multiple- aiﬁ

"IN

order closed-loop poles. Ay

The evaluation methods presented in Section III are grouped as requiring Ay

fale

1. Direct calculation R

2. Root locus plots vk

3. Open-loop Bode or £ plots o

L. Closed-loop Bode asymptotes s

e

The numerical results obtained in an illustrative example are presented to indi- 2} "

cate the accuracies obtainable with each technique. Details of the computations fﬂff

are given in the Appendix. f%:;

?&%Zi}vfcfé?Ix The extensions for multiloop systems, which are given in Se:xtion IV, generally 3;}1
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SECTION II

MODAL RESPONSE COEFFICIENTS AND SENSITIVITIES

A. MODAL RESPONSE COEFFICIENTS AND SYSTEM RESPONSES

For the single-loop system shown in Fig. 1 the feedback system analysis
process of interest here can be presumed to begin with a given nominal open-
loop transfer function G(s) in factored form. The results of the next stage of
analysis are the closed-loop transfer functions G.(s) and Gpe(s), which can
also be in factored form. The closed-loop system has but one input, r(t), and
two observable outputs, c(t) and e(t), so these two closed-loop transfer func-
tions together constitute a complete mathematical model for the system. In
essence the two open-loop elements of Fig. 2 replace the single open-loop trans-

fer function G(s) plus the feeaback connection (Fig. 1) as a system model.

c(s)
Gpo(s) -
System Output

R(s)

Input

E(s)
e Grp(s) -
- System Error

Figure 2. Open-Loop Elements for Single-ILoop Feedback System

The closed-loop transfer functions can be combined with transforms of input
functions to compute output time responses using routine inversion procedures.
The system's natural modes are explicitly displayed by the q;'s of the transfer
function denominator factors, but the relative magnitudes of these natural modes

are indicated only implicitly. A basic set of these magnitudes, or modal
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response coefficients, are explicit features of the weighiing functions, which
represent the system time responses to a unit impulse input. Thus, a complete
physical picture of system response characteristics is most easily achieved when
both the transfer functions and weighting functions (or their constituent modal
,response coefficients) are known. To form a éomplete analysis structure, it
should be possible to find the coefficients from either the open-loop or the
closed-loqﬁ transfer functions, i.e., they should be explicitly defined by the

‘elements contained in either Fig. 1 or 2.

In the present article modal response coefficients will be related to open-
and closed-loop transfer functions for systems containing only first-order
closed-loop poles. Several useful connections between the m+n modal response
coefficients will also be déveloped. The coefficients will then be used as
elements in system weighting functions to show their connection with system

responses to various simple time function inputs. Subsequent articles in this
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'i§§ section will relate the coefficients to sensitivity measures, and will generalize
Y
;Eﬁ% the developments to systems containing multiple-order poles. The actual determi-
n
A \" i“: . K3 3 .
E§2§ nation of the coefficients from the several forms of transfer function represen-
-.;"gd"i
tation (e.g., Bode and pole-zero plots) will be deferred to the next section. i
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;QEQ The system input-output weighting function is the output, c(t), response i&i
a when the input, r(t), is a unit impulse. Since the ILaplace transform of a unit o~
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§§§§ impulse is unity, this weighting function, w(t), is simply the inverse Iaplace N
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Q; is the ith modal response coefficient. It may be evaluated from

% = [t +apere] (3)
1

If m = 0, the bracketed quantity of Eq 2 has the constant term k/1 + k) added,

and the corresponding time response contains an additional term «&(t)/(1 + k).

For real systems m 2 1 always, if higher frequency characteristics are taken

into account; but low frequency approximations, for which m = O, are often used.

As an aside from the main argument, it is worth noting that
splitting G..(s) into partial fractions, as in Eq 2, is equivalent to
replacing the (m + n)th order differential equation for w(t) by m + n
first-order differential equations of the form

. . 25
wi(t) + quwy(t) = @8(t), 1 =1,2, <, m+n (&) £ £
Y
2

where w;(0) = O and the total weighting function is
ad
w(t) = w(t) +wp(t) + -0 +wi(E) + oo wyun(t) (5) 03
3]
L
Thus the total weighting function is equivalent to the summed responses E"@‘h
of m + n first-order systems excited by an impulse input, as shown in Ry
Fig. 3. The modal response coefficients can also be thought of as %C‘,‘.{
initial conditions on unity-gain elemental systems (the Q;'s in Fig. 3 iy;f';\j,
replaced by 1's) which, with no other excitation (no impulse input to 5:
the system), results in a system output equal to the weighting function. ,‘_.‘1-'}‘
For this interpretation the elemental differential equations would be ="
[
. . P
Wi(t) + Q.iwi(t) = 0,i=1,2, «ss, m+n (6) ]
AN
where w;(0) = Q; g,ﬁ‘.@
3]
S
The modal response coefficients can also be evaluated directly from the open- ‘,~
A
loop transfer function. In terms of G(s), Eq 3 can be written as Reey
R
(s + a3)6(s)] N
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Figure 3. Elemental First-Order Systems Corresponding to
Components of the Weighting Function

i)
'
-

S5
-l
-
bl

"
.
N
~~
Y

12

L
[P . W T - _ T M e T
.~ R IR i PR o S ot LAPE L A e RN S T TNV R LN NN \'\"\{k R
" -':"..-‘-‘. -."-‘(“1('& ."\‘3-".;-‘&\.' '-::.,~ .q'\»' AR :‘\-' S e e A A - L 8]
. ™ e " AR IS
AR L v -




o S L

IV RS TR R

At this point it is convenient to introduce a new variable, Q;(s), which is
defined as

(s + q3)G(s)

Q;_-G(S) = 1T ¥ G6(s) (8)

and from Eq T Q;(-qi) = Q (9)
Rewriting Eq 8 as El + G(sﬂ Q;(s) = (s + qi)G(s)

and differentiating with respect to s, gives

sz(s) ¥ ag(s) dG(s)
[+ a(s)] —— + di(s) 22 = &) + (s + qp) = (10)

Evaluating Eq 10 at s = -q; and recalling that G(-g;) = -1,
*
% - $e) - [mEm (11)
i dG(s)/ds s=-q;

Besides providing a means for evaluating the Q;'s directly from the open-loop
transfer function, Eq 11 will subsequently be used to show that a simple rela-
tionship exists between the modal response coefficients and the gain sensitivities

defined in Article B of this section.

The modal response coefficients for the input-output weighting function,
w(t), are closely connected with similar coefficients for the input-error weight-

ing function, w,o(t). In general the error is given by

e(t) = z(¢) - c(t) (12)
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so the error response to a unit impulse input will be

pelt
Ly

«{~

ee(t) = 8(t) - w(t)

min

...q.{-,
S(t)-ZQiel, m2 1

& (13) r
= §- ’_:
m+n -ast oo
1 ql ]
1+K8(’c)-zQie ,m=0 £
i=1 L
%
The modal response coefficients for the input-output weighting function are thus 5'3"

seen to be the negatives of similar coefficients for the input-error weighting

function.

-7
7

Certain simple combinations of the modal response coefficients have properties
which are occasionally useful. These are most conveniently developed by matching
coefficients in expansions based on the partial fraction form and the closed-loop

system expressions given as part of Fig. 1. In root-locus form, whenm 2> 1,
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The sum of the negatives of the closed-loop poles is (Ref. 1), form > 1,
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Y oa. = b+ k8 (17)
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. J=
=1 for i = j). Equation 16 then

m+n
where by is the sum of the negatives of the open-loop poles (b1 = Z pj) and 81111
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The Bode form for Grc(s) can also be used to establish similar results. N

The simplest of these occurs when s is allowed to approach zero, i.e., for {
nz21,
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Jm 5P & un () (22)
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Equations 19, 21, and 23 can be used to calculate one or two of the Q;'s if all
the others are known, or as checks on computation.

2. System Responses to Simple Inputs
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Besides their central role in the system's welghting functions , the modal
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response coefficients also appear in simple ways in the system response to

ELE

other elementary inputs. To illustrate this feature the outputs resulting from
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steps, periodic inputs, and inputs composed of power series in time will now be
examined.
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a. Response to Step Imputs. Next to the weighting function the step
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response is the most common transient response model used in systems analysis.
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The indicial response, or response to a unit step input, is just the integral
K of the weighting function,
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The Q; 's are related to the modal response coefficients, Q;'s, by
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K
% = [orels] = {75g > x=0

or, comparing Eq 26 with Eq 23,

m+nQi
W = [Grc(s):_ls=o = Zq_

i=1 ;N

(25)

(26)
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Qy is the magnitude of the output’s final value when the input is a unit step
and the system is stable (real part of q; > 0). Combining Eq 24, 25, and 27,

nn Q.

I(t) = 2 — (@ - e-qit) > 43 #0
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b. Response to Periodic Imputs. Any periodic input may be represented by a

Fourier series of sine and cosine terms at various frequencies.

systems consideréd. here gre linear, the output is the sum of the outputs due to

(28)

Because the

each term in the Fourier series. Consequently, only one sine and one cosine

input need to be considered. To modify the periodic input (which is defined

from -» £ t £ 4o from a Fourier series standpoint) to a periodic-like input

which is zero until t = O, the elemental periodic input will be multiplied by a

unit step, u(t). The input is then
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r(t) = [ak cos ayt + by sin o.kt]u(t) ¢l

L

= [ck cos (gt - ﬂrk)] u(t) (29) §1

i

B

where ¢ = Vaﬁ + bﬁ, ¥ = tan™! -:—t. %:,
N

The response for an arbitrary input is related to the impulse response by :*Z‘_

the convolution integral, i.e., by
E

t g

c(t) = f r(t - t)w(r)dr }3

0 3

(30) o
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f r(t)w(t - T)dT
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With the weighting function expressed in terms of the modal response coefficients

(Eq 2) and the input given by Eg 29, the output pecomes, using Eq 30,
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=1 ap+ oo i;

mn . =

+ Y, ——2-Q1——E [ak cos (@t - @) + by sin (ot - cpklﬂ (31) t:f

=1 ¢ay * o

where P = tan™! “k/ Q;+- In terms of cy and ¥} the steady-state portion of
Eq 31 (the transient first term is unchanged) is

mn

Y
cgs(t) = o 2 —===cos (&t - ¥ - P;) (32)
i=i '/qi + uﬁ
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The ith terms in the responses of Eq 31 and 32 are just the response of the ith
elemental first-order system shown in Fig. 3 to the periodic-like input given »\
by Eq 29. Considering only the steady-state portion, each elemental first-order E
system scales the input amplitude by the amplitude ratio Qi/ ‘/qg + wl?{, and con-
tributes a phase lag @, - :;:
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Equation 31 or 32 can also be used to prove the well-known fact that the
amplitude ratio and phase of the steady-state response to a sinusoidal input of

frequency . is the amplitude and phase of c’rc(j“’,k) . Thus, in more conventional

form,
css(t) = cilGre(dag)| cos [at - ¥ +¥8re (i) (33)
where
m+n Q’.l. min Q_iq.
IGrc(j&:k)l cos ¥Grc(rjak) = .Z _2__ cos q’ki = 'Z 2—_1_'
1= ay + i=1 of + aﬁ
and
m+n Q; min Qs

lGrc'(JakH sin ¥G..(Jax) = - Y 5 sin @y ; = - 1‘2‘ 2_“1%
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For a periodic-like input containing all the terms of a Fourier series, i.e.,

0

r(t) = 2, [x cos ayt + by sin wctlu(t) (34)

the response will be, by superposition,

) = 5 3 Qi(bk:"“ - qui) -

k=0 i=1 ay + Wy

_ [ax cos (at - ;) + by sin (ot - 9] (35)
9 T %
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c. Response to Power Series Inputs. For inputs which can be represented

by a power series in time, a procedure similar to that above can be used. It
is again only necessary to consider the response to one term. For an input of
(dM/M!)tM, the response is (assuming M is a non-negative integer and that the

input is zero for t < 0)
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Thus, for an input of

it
M
[

r(t) t20
Mo (37)

= 0 , t<0O
the response is

min Q -g;t M (-Q,-t)j
e(t) = 2 2__2;':_4_]_ e -_Z__~___

l -
P qQ; 7O (38)
i=l M (-q;) j=0 d} TR T

For example, the response to a unit step (M = 0) is

min Q; 'qit
= = - L
I(t) = & m (e 1-) > 9 F 0 (39)

which corresponds to the previous results (Eq 28). For a unit ramp input,

n-+tn Q‘i _q_-t
I:c(t)]Uni‘l; ramp > (e BRI qit> > 94 #0 (ko)

The modal response coefficients can be related to conventional output and
error coefficients by using only the portion of Eq 38 which contains the power

-a:t
series terms in the output, i.e., by ignoring the e 4 transient terms. Then,
for a power series input

d d
2
r(t) = d0+d1t +—21 t2+—3? t3+ crcy t

v
o

(k1)

the output, less transient terms, will be
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By changing the summation index j to k = M - j and rearrapging the order of the
summations, Eq 42 becomes
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Combining Eq 43 and Uk,
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i1 4 i=1 94§ i=1 @7 -

Ror(t) + Ry&(t) + RpF(t) + «-- (45)

The R's in Eq 45 are output response coefficients which are occasionally useful
for special purposes. Far more common are the error coefficients. The power

series portion of the error response to a power series input is

r(t) -
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m

[e(t)] Power series only [c(tﬂ Power series only

-l
g

Egr(t) + B (t) + Bpi(t) + «-- (46)
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Using the results of Eq 45, the error coefficients are seen to be
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By = Ry

Because of the many ways in which modal response coeZficients can be obtained

these formulas are especially handy for the calculatiorn of error coefficients.
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B. SERSITIVITY
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The modal response coefficients discussed above are the last step in the

Y
o

analysis problem for linear feedback systems if the open-loop transfer function,

G(s), is considered to be ar exactly specified quantity. Unfortunately, the
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poles, zeros, and gain of G(s) ordinarily vary somewhat about nominal values

which are themselves inexact. Thus,analyses 2re not really complete without

some consideration of the effects of parameter variations.
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This purpose is
served by the sensitivity factors to be discussed in this article.

AST R,

As noted in the Introduction, sensitivity measures have been a major concern

in feedback systems since the early days of feedback amplifiers.
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The pioneering
- investigators defined a sensitivity function as one of the essential features in
a mathematical definition of feedback.

r"
L

Y

"

.
'y

ed it
~

TS

This definition, which relates to the
over-all sensitivity of closed-loop transfer functions to variations in the open-

loop transfer function, we shall call "classical sensitivity."
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More recently
attention has been centered on the effects upcn closed-loop poles of variations
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in open-loop gain, pole, srd zero loeztions. The sensitivities of this nature

we shall call "gain sensitivity,” "pole sensitivity," and "zero sensitivity,"”

respectively. These sensitivities are especizlly important in servosystems

because most such systems exhibit only one or two dominant closed-loop modes.

The variations of these modes with open-loop characteristics are therefore of

€

most concern, and the pole, zero, and gain sensitivities are of most value in

assessing the effects of the variaticans. So, the sensitivity functions for 5§
closed-loop root variations will be the major toric below, with their relation gg
to classical sensitivity being a short aside. Again tne developments will %2;
presume first-order closed-loop poles, wiih generalization to the multiple-order i;

5
’

situation being deferred to the last article of the section.
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1. Gain, Pole, and Zero Sensitivities o
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The purpose of this zrticle is to derive the expressions for the first-order §§§

s sensitivity of the closed-loop poles to variations in the open-loop gain, «, the A
?§§ open-loop poles, “Pj3> and the open-loop zeros, - i With all these parameters §§§
25§ being considered as variable, the open-loop transfer function, G, must be con- i&i
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G = G(S:K:ZJ:PJ) (48)
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Then the total differential of G is
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Because the closed-loop poles, -q;, are defined by the equation
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the total differential of Eq 48 must be zero for s = -q; Setting 4G = 0 and
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da; = [m]%-q.i(g%) ax + }L_}‘, (Bazi.)&- dz; + %} (%G—> =_q.dpj; (51)

The variation in the negative of the closed-loop pole, dg;, can also be

expressed in anocher way by noting that gy depends only on K, the zj's, and the
pj's, i.e.,

QG = qi(K:zj:Pj)

and writing another total differential as

Z. + 8—— dp.
37 & Ty R

aQ‘ n BQ~
i dk i
dqi = K'?ﬁ? ra + j§1 vzg ¢}

idk . mn g
= S —+ Z Szjdzj + E 85.dp; (52)
j=1 j=1 4

Here the factors k(dg;/dK), qu/azj, and bqi/apj are given a special symbol, S.

Thesé are the first-order sensitivity factors. The subscript and superscript

notation indicates that a differential increment in the open-loop quantity,
defined by the subscript, results in a differential increment of the ith closed-

loop root equal to the sensitivity factor times the open-loop parametric
variation.

Equating like coefficients in Eq 51 and 52 gives
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definitions were selected because they provide some simplifications in subse-

quent relationships.

If the open-loop transfer function, G, is written in root-locus form,

n
I (s+zj)
¢ = xS (54)

m+n

M (s +p.)
I

the sensitivities are (remembering that at s = -g;, G = -1)

v i -1
&l S =
-&K.;,. K aG’
e Js -
L =-q4
- S
Ve, i K
' S = —— (55)
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' ! st - S
51 pj 4 - Pj

-

10

o
O

gy ¢

Examination and further interpretation of Eq 55 reveal four very interesting

vproperties of the sensitivity factors:

a. The gain sensitivity is a factor in each of the sensitivity
terms. Thus, Eq 52 becomes

. n az. min  dp.
ildk E J J
dqi = SK K + Z. - * (56)

= %% = R TRy

b. The gain sensitivity is equal to the modal response coeffi-
cient. This is easily seen by comparing the expression for
the gain sensitivity with Eq 11, i.e.,

-1 i
dGisi?d%]s_ a = SK (57)
T

This equality is very useful since all of the properties
previously derived for the modal response cofficients are
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applicable to the gain sensitivity. Using this correspond-
ence, other formulas for the gain sensitivity include

-

Sz [(s + qi)Grc(s)] _— (58a)

(= + 9,)8(s)
] )

s=-q;
n

k I (-qi + zj)
- J=1

- m+n (58c)
(1 + k2 H (-q5 + QJ)

J=1
J#
mtn
- II (-q; +py)
J=1

= e (584)
(1 + Kop) I (g + )
J:

JH

Another formula for S,jg, which could have beén derived previ-
ously for Q;, is a direct result of Eq 3T:

i o = -1
PE S F O YT
! (59)
n 1 n+n 1 59
P

PR B S T B A 4

S

S=-qj

Various gain sensitivity combinations have the same simple
forms as the modal response coefficients. These follow from

the equality of Eq 57 and the previous results of Eq 19, 2i,
and 23, i.e., form 2> 1

w4 1
21 5, = Koy (602)

mtn .

A
.2: Sin
i=1

[
=
rs1
'
iy
3
Kal
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B.—x
H
N
[e/)
80

(60b)

m+n S}<

Z —_— = P’ X K 3 k=20 (600)
i=1 qi '
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d. The sum of all the zero and pole sensitivities for each
closed-loop pole must equal one. This follows directly
from Egq 55 and 59. Thus,

n i min i
2 Szt 2 Sp. = 1 (61)
=1 J4 i=1 7d

This initially surprising result is easily explained by
recalling a root-locus plot. If all the open-loop zeros
and poles are moved the same amount, all the closed-loop
poles will be moved by that amount.
The gain sensitivity can be interpreted in two ways which are physically
enlightening. First, Si is a measure of the slope of a conventional root locus.
As root loci are ordinarily plotted for fixed open-loop poles and zeros, the

only variable along the loci is gain. Thus the plot gives the zeros of
1+ G(s,k) = 0 (62)

Taking the total derivative

oG

dG Sg ds + g% dx (63)

Along the locus dG(s) = 0, so

K Sk dk

s = -I5¢ | «

-si(%) (64)

K\ K

dk/k is a real number, so the direction of ds along the locus for positive dk/k
will be given by -Sk which, in general, will be complex. The minus sign appears
because Sk is the sensitivity of q which is the negative of the ith closed-loop

pole.

The second interpretation of Si derives from the same argument as that used

above by adding an additional step. The derivative of 1n G(s) is

d 1InG 1 4G
ds (=) = G&(s) dgf) (65)
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which, along the root locus, becomes
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ds - Si
K ;
i ds &
S, = y
K d In G(s by
ds 14
- aG/G (67) E‘i
&
Thus the gain sensitivity is a measure of the shift in a closed-loop pole due §3
s
to a fractional change in the open-loop transfer function. Because only K “j

changes along a conventional root locus, Eq 67 is really no different from
Eq 64, except for the introduction of the logarithmic form.
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2. Limiting Behavior and Special Cases

The magnitudes of gain sensitivities can cover the entire range of values

-

)
41\"

-

from minus to plus infinity. Yet, intuitive notions of "sensitivity" as a

e

general concept in closed-loop systems make part of this range appear unreason-

=

LG PR

sble. One part of the problem is a direct consequence of the sensitivity

definition, while another is associated with its first-order approximation nature.

a4
>

oo
Ap L

A Detter understanding of both facets can be gained by an examination of limiting
cases.

t
2, Sl
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In general, closed-loop poles depart from open-loop poles for low values of

A ;'_; y,‘_g(:!

gain, and proceed to either open-loop zeros or unbourded values as the open-loop

[0 a0
5

gain becomes very large. The gain sensitivity, as given by Eq 59, is

See
>

1152100
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As Kk approaches zero, the closed-loop root -q. approaches the open-loop pole
) 4

:g from which it derives, i.e., gq; —> Pi. Then the term 1/(qi - pi) in Eq 59 is
- dominant, so
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Similarly, as K becomes very large, n of the closed-loop poles approach open-
loop zeros. If the ith closed-loop pole is one of these, and it spproaches the

Ot B of o
LT

P
8

52,

Jth open-loop zero so that g; —= Zj, then

B!

Sty
(X

sf;] ————-——1——— —=0 (69)
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Finally, m of the closed-loop poles have no zeros to go to, and hence become

Te
]

very large relative to the pj and zj. The sensitivity for these poles is
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When the gain is sufficiently large for the open-loop zero db line to intersect

the high frequency asymptote, the open-loop transfer function is approximately ';\;
Y
RN
. K N
G(s) = — xtf:'e
" =
so that g4 will be ,[?j:
* m }\i
a = - V"K (71) '[L:«',
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Thus, the sensitivity of the unbounded pole will be @
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Anpther circu=stance in which the sensitivity can become very large is
vealed by Bg 58d. Here it is spparent that the gain sensitivity for a closed-

loop pole beco—es very large as that pole nears another closed-loop pole.
Irdeed, as Q; becozes equal to 35 indicating a branch point on the root locus,
the goin sepsitivity goes to infinity. This is to be expected since the sensi-
tivity factors defined thus far have not considered multiple-order, closed-loop
roots. As long as the gein is finite, an infinite gain sensitivity always
indicates rultiple-order, closed-loop poles.

A special situation of considerable interest can occur when a closed-loop
root lies petween an open-loop pole and zero which are much closer to each other
tkean 0 211 other open-loop poles and zeros. This is the so-called dipole case.

The sensitivity for the bounded closed-loop pole will be, approximately,

X
ey
-

) (73)

The raxirmm value of Si will occur when g; = (zi + Pi) /2, for which SiK becomes
i - 1

s % F (- m) (74)

3. Sensitivity Functions for Alternate Transfer Function Forus

The above equations for gain sensitivity are the same whether G is written
in root-locus or Bode form, i.e., S,i< = S;E In fact, the equations are still
valid if some of the terms in G are in root-locus form and some are in Bode
form. I{ is, however, necessary to modify the open-loop pole and zero sensi-
tivities for terms which are written in Bode form. From Eg 53 it can be shown
that for zeros and poles which appear in G in Bode form, i.e., [(s/zj) + 1] or
[(s/pj) + 1)] , the sensitivities are
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9;5%
J zj(zj - qi)

[o2]
e
|

i (75)
;5%

si =
P; ~ py(a; - py)

Frequently open-loop zeros or poles will occur as complex-conjugate pairs,
and variations in the system will change both zeros or poles. Consequently it
becomes desirable to introduce sensitivities for the parameters which define a
complex pair of zeros or poles. For example, consider a complex pair of zeros,

zq1 and zp, which are defined by their frequency, w, and damping ratio, {, i.e.,

Zy = §a>+,jwV1 -QE

z2o = Co-Jjo Y1 -¢

(76)

For this situation it is useful to define frequency and damping ratio sensi-
tivities as

i qu aqi dZ1 qu de
S = + —=
(N ow 321 do 5z2 aw

(17)
qu qu dz, Bq dz,

st - -
¢ ~ ¢ ~ 9dz; At Bng

It is easily shown from Eq 55, 76, and 77 that if the term appears in G in
root-locus form (52 + 2ws + we), the frequency and damping-ratio sensitivities

for a complex pair of zeros or poles are

2(w - qu)si
© 7§ - 2oy +oR

) (719)

q_? - 2§wqi + a)2

where the upper sign is to be used for zeros and the lower one for poles.
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If the term is written in Bode form [(s Jaf) + (2ts/w) + 1] the sensitivities
are

i
@ QE - 2§0X1i + 0.)2
(79)
o ?quws,i( ;;-;
= 3 5 =
¢ 7 @ - oty + 3
P

-
4.q

‘s’
a

ms o

"
L4

Pl

For some cases it may be more convenient to define a complex pair in terms
of their real and imaginary parts, i.e.,

2, = a + jb

Zo a-jb

In this case, with the term in root-locus form [52 + 2as + (a2 + b2)] , the sensi-
tivities are

Hio

sl . g *2(a - q4)S N
a = - el
%8 2 _oaq, +a? 412 3

(80) e

i ol

S% _ %q'_l _ inSK {:__::
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4 k& e
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A

If the term is in Bode form [se/(a2 +b2) + 2as/(a + b2) + 1], the sensitivities
are

F o
[ £2q, (a2 - b2 - aq, )S;

st -
a a2+b2q52_-2aqi+a2+b2
L - (1)
. (Dg
S% ) i2qlb (2a ql)SK

2
A J_qi-2aqi+a +b

-t
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k. Connection Between Classical and Pole, Zero, and Gain Sensitivities

As pointed out by Bode, the usual conception of feedback involves two distinct

ideas. The first is the more obvious and common—that feedback implies a loop
transmission or return of some measure or output quantities to earlier stages of
the system. The secornd notion is that of a reduction in the effects of varia-

tions in the elements of the forward loop.

To point up these old and well-known simple ideas, consider the system shown

in Fig. k. Here G is the main controller, Gy the feedback element, Y the

N

Ge

Figure 4. Generalized Single-Loop System

controlled-element, and N is a lumped source of unwanted signals. The system
output, C(s), is
Gy ¥ Y

C(S) = T+ GoGrY R 'i-1 n GaGfY N

Grc[? + éi @]

Gre [GaYR + YN] (82)

where ¢ - = 1[G G = G.GeY
re T T +G,GY | Gpf1 +6] 2 - e

o 11
T€ 7 1 +GGpY ~ 1 +G

The presence of the loop transmission, i.e., the existence of the feedback

element Gy, can lead to practical advantages when feedback is dominant. Thus,
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when lGl >> 1, the output approxirates

o) = fe "’e’:’ﬂ (83)

The relationship between output and input is rade substanii

2lly irdependent
of the controlled-element, apd

the effect of unwanted sigpals on the output is
materially reduced (Ga being gererally very large to rake possible the inequality
IG! > 1). Asan oren-loop control, the output would be

C(s) = C,YR + YHi (8%)

Tne difference due to ihe closing of the loop is just the error/input transfer
function G

re- Tnous Gpe (the classical "return difference™) is the furdamwental
reasure of the irprovement introduced by the loop transmission.

To illustrate the decreased sensitivity effects, consider a differential

change in the closed-loop transfer function CGpo- For regions in the S-plane

where G,.. and G are analytic,

ape = —1— E.fdGa + GdY - (GaY)ade] (&)
(1 +06)

or, in terms of fractional changes >

S T N
Gro 1+6 (G ¥ Gr

daG ac.

a , 4y T
G —_— == - — 86
e 1 G, Y Gf] (86)

Again, when the feedback effect is dominant,

e S Gl tT T (87)
re a f
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The beneficizl consequences of large velues for the oper-loop transfer fumction,
CG. ip cecrezsing the effect on the over-all transier function of forvaré-logp

controller and controlled-elerent variations is apuearent from Eg €7. The open-
loop variatiorsdG,/G, and dY/Y are decreased by the factor 1/G. Iiote, however,
tket variations in the feedvack elerents are reflected directly into variations

of the closed-lcop i{ransfer function Cro- In general, the beneficial reduction

is determined by the factor 1/(1 = G)—egain the error transfer function is a

fundarental ceasure, this time of sensitivity.

Define, now, an over-all system sepsitivity as

Cre 4G, /Gre d 1n Gpe é In G
dx/x =~ d&lmx = dxfx

(85)

s
[92]
W
l

(R}
LA
v U N egetped

]
by A

where x is soxe rarareter or element in the open-loop sysiemn. If x is taken %o

be the forward-loop controller transfer function, G,, the controlled-elecent

v

transfer functiion, Y, or the forward-loop gain, 4p, it is apparent that

G G G
re re re 1
SGa = S:{ = SKF = ]—';T;' = Gre (89)

This definition of sensitivity may be considered to be classical (Ref. 3 and L),

although Bode's original definition amounted to the inverse of that defined here.

Examination of the role played by the classical sensitivity in Eq 82, 85, and @9

. l..
/
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',
L A

’
)
-
4

indicates the overwhelming imporiance of classical sensitivity as a fundamental

¢

»
e

quanrtity in feedback systems.
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Classical sensitivity can also be used in expressions involving open-loop

9 <
o gain, pole, and zero changes. To illustrate this, return to the simplified =
3;' block diagram of Fig. 1 for which ::::.j::
o '-:':'.‘:
o > .’-.:-:
S -~
@, Gre ac.., /Grc ] -

1
’
’

S¢s = Ta/c - 7+G = Cre (90)
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The fractional change in the open-loop transfer function is given by
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e _ ax o % T dpy (o1
E—?Tzs+z--.}:s+n- 9
i=l i 3= 1

so the fractional chapge in the closed-loop system ciiarecteristics is just

4Gp, Ere fax . & dzg R Gpy
re inn ST g Py

]

)
'Y
[}

.

Tt

Tne classical sensitivity is a function of s, and can range over extreme

sy
’
'
=

)
Ty

values. In the frequency womein (s = jw) its liniting cases occur when |G] > 1, %:.{;'
which usually occurs for low frequencies, and |C-| < 1, which always occurs for =
hign freaquencies (m> 1), viz: g-:i
AR
1 2%
7-. -
G - > le(Gm)| > 1 R

sCGa| = ] 66 (93)
1 2 lG(jw)] <1 -

U

LS

)

D At e DT
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ey

Therefore, on a classical sensitivity basis a "good" system is one with lots of

I
feedback—|G(jw)| >> 1 over a broad frequency range—hardly a revelation of £=1
earth-shattering origipality! U

—~pn

The classical and gain sensitivities are related in a very simple way. The

gt

I

relationship is most easily developed by noting that classical sensitivity

corresponds to the input-error transfer function which, in turn, can be written

3
il

P

in terms of the modal response coefficients,

-y -
\l‘l “”:l .
oty Y

I m+n Q3
- o

Sg¢ = Gpe = 1 - 2. m1 (9k) o
re i=1-(-s_:—y >

roerresegverete
Al

» .
o
£
i
Since the gain sensitivities are equal to the modal response coefficients, -
. 7|
G m+n gt 5
re K E\w
S = 1 - >
G l}:} Gray °» "2 (95) .
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Equation 95 expresses the classical sensitivity as a weighted sum of gain sensi-

LI )
o
LS

]
[)
ck

ivities. This could be carried further formally be introducing pole and zero

gl
» e

sensitivities to replace the one (see Eq 5i), but this seems hardly worthwhile.
Equation 95 also indicates that the gain sensitivities are the negatives of the
residues, evaluated at the closed-loop poles, of the classical sensitivity
(Ref. 10 and 12).

C. EFFECIS OF Ntu-CRDER CLOSED-1COP POI=S

The developments of Articles A and B are restricied to cases for first-order
closed-loop poles. This article considers the additional complexity introduced
by the existence of Nth-order closed-loop poles. ¥With the exception of N = 2,
Nth-order closea-loop poles seldom occur in practice. The developments of this
article are, therefore, somewhat academic, although required for completeness.
This article is basically independent of the main body of the report, so the
casual reader may skip it without seriously detracting from his understanding
of other material. The procedure in this article will be to retrace most of
the prior developments, noting what additions or modifications are required to

generalize the results in the case of an Nth-order closed-loop pole.

If -q; is an Nth-order pole, the partial fraction expansion of the impulse

response or weighting function, Eq 2, will contain the terms

& %o Gig e Qiy
L s 5+ 5t N
STUH (s +q)° (s +q) (s + q4)
2 N-1
-q:t Qj_,-t Qi,t
= e Qi1+Q,j_2t+-—2)-!——+---+ NN_11 (96)

where the N modal response coefficients are evaluated by

1 A% (s + q,)Va(s)
k - @W-BT |k 1+ 6(s) (97)

Q.
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There is a useful relationship between QiN and a modified gain sensitivity,
which will be developed shortly. To show the relationship, it is convenient to

introduce the variable

(s + q;)M(s)
1 + G(s)

Gy (s) (98)
where

.:.E.

Qj_N('Qi) = 0

Rewriting Eq 98 as

(s + q;)76(s)

[ + e(s)]ag,(s) (99)

and differentiating with respect to s, gives

(s) dG(s)

[1 + G(s)]

+ QlN = N(s + qi)N"]G(s) + (s + qi)N dggs) (100)

Evaluating Eq 100 at s = -gj3,

Uylas =0 (101)

~s=-q;

therefore

(102)
S=-qi

Repeated differentiation of Eq 100 shows that

Fﬁ%q =0 , 1<k<N (103)
ds

S=—qi

-N!
d : = b
an Qi T s (10k)

ds

=-q_i
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Equation 103 expresses the interesting property that when -q; is an Nth-order
pole, the first (N - 1) derivatives of G(s) with respect to s are zero at

s = -q;- Equation 104 is the general expression for QiN and reduces to Eq 11
for N = 1. This equation will be used to show the relationship of QiN to the

modified gain sensitivity.

A relationship between the N modal response coefficients can be derived

from the above by considering the functions

&k | (s + g)%(s)
Ik [T+ 6(s)

o, (5) = T3 1 E

(105}
d

*
where Qik('qi) = Qik

Using an alternative expression for the closed-loop transfer function (Fig. 1),

Eq 105 can be written
n ]
k II (s + zj)

N-k j=1
N - K)T 0K m (106)

(1 + Kag) II (s + qj)

J=1
| JH -

Qik(s)

m+n
where I (s+ qj)

product of s minus each closed-loop pole except the
j=1 Nth-order one, -q; (there are min-N terms in the
JH product)

N
<

-

,«_
PR
.
LA,

.
.

LR
%

After differentiating once, Eq 106 becomes

LIk I
=% s ‘
.){&u

n
. N B K ,I_I] (s + z) n o, min,
Qi, (s) = J= S 2 (——
iy (N-k)! qsN-k-1 o m+n o S + 2z o s +q;
' J#i (107)
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Combining Eq 107 with the formula for the derivative of a product, (

il

Lo
o
Y [ NOTAE) R S T - (108) ie
2 [z (s)e s] = : 10
ask U1 2 poo ht (& -h)? asl  gsk B ?’CE
) v
glves %,‘)‘:u:!]
- n m oy
N-k-1 N-k-1-h I (s +2) 2
* (S) _ 1 1 d j:] ‘:-.:‘.?4
U, S N-x ht (N-k-1-n)? J N-k-1-h o T %
h=0 (0" +xep) I (s + qJ-) 3
J=1
- JFi -
ah 55 1 TE? 1
x 2 - (109)
dsh i1 (s + zj) i3 (s + qj)
2 jfl"i
Combining Eq 106 and 109,

4 (s)
G0 - g E e ” & > - B )
& "% po0 foash |55\ oz St

3 hox -n : h+1 m+n 1 h+1
= v 2 (-1)74} (s) Z( ) - ( ) (110)
N-k h=0 k+1+h j=1 s + Zj j= s + QJ
J

Finally,

: N-k-1 n n : h+1 mn , h+1
Gy = g O (-1 (—) - (——) (111)
1k N-k o= Q’lk+1+h Jé 25 - Q4 J§ 95 = 93
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Q'lN-1’ QJ'N-Z’ QlN-3 Q11 somewhat similar relationship is given in

Ref. 1k.

Although the general expression, Eq 111, is rather complicated, for the most

common case of N = 2 it reduces to simply

o - o2t - z;.(——-—) ()

o e

For Nth-order closed-loop poles, the previous expression for the sum of the

modal response coefficients, Eq 19, is readily modified to

2t = Ky, m21 (113)
1

i

where the summations include the Q;'s for all first-order poles and the Qi1 's
for all higher order poles. The validity of Eq 113 can be shown very easily
from the partial fraction expansion of Gp.(s). Equation 113 is obtained by

multiplying Gre(s) and its partial fraction expansion by s rud letting s —e .,

For Nth-order poles the system responses are considerably more complicated
than those given previously for N = 1. For example, if -q; is a second-order

pole the system resjonse to an input of sin wt contains the terms

Q’i1 -q;t
- 35 | +qisinwt-wcoswt
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For an input of cos wt, the response contains the terms

R
r‘;ll:‘
Tty

2
7

>

Qi1 [ e-.qit + cos wt + w sin at
—_— | ag. q.
@ + df 4 =
“ig 2.2 (24 -q;t
+ @ - qf - (o + )qi‘be

2
(€ + o)

+ (qf - ¢f) cos wt + 2q;w sin arb}

A general expression for the response of an Nth-order pole to a cos wt or

sin wt input can be derived by considering cos wt and sin wt to be the real and

imaginary parts of erb, i.e.,

cos wt = Re (e
(114)

E
\-jg-u

sin wt

Using this technique we find that response of an Nth-order pole, -q;, to a
cos wt input is

. h B
jat -q5t k-1 (qu+qi) t
N ¢ -e 2 Y
h=0
Z Qik Re - X
k=1 (Jo + q;) !

r;;q;g:
D}

»
Iy

JQ‘.
E'R
) N

For an input of sin wt, the response is

. h .h
: -q:t X2 (o + ;) ¢
Jat e L E i

e - 3
N o h!
Z Qik Im k

k=1 (Jo + qi)

It is important to note that in evaluating the real and imaginary parts of the

above expressions q; must be treated as a purely real quantity even if it is
actually complex.

The responses for power series inputs are equally as complicated. For

example, if -q; is a second-order pole other than zero » the response to a unit

ho



step will contain the terms

Qi
i} (1

-qt) Qo [ -qit ]
a; e )+—é-1—e (1+qit)

For a unit ramp, the terms are

\‘
3
NELEO

EPLV D

%, [ -t & -q;t

—2l(eq1-1+q.t)+—-—g[q.t-2+eql(q.t+2)]
1 3 1 1

95 aj
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The general expression for the response of an Nth-order pole to an input of tM/M!
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can be derived by taking a partial fraction expansion of the product of the

A~E T arey op
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Ieplace transforu of the input and the g; terms of the transfer function. After

a considerable amount of manipulation, the inverse transform gives a response of
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From the previous development it is obvious that the sensitivity definitions §5zﬂ
N :\‘
must be modified for Nth-order closed-loop poles. With the earlier definitions, diﬂ

the gain sensitivity is equal to -(BG/BS);l a0’ but from Eq 105 §§§-
= i _g

Nt
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Retaining only the lowest order terms for each parameter and remembering that N

the first (H - 1) derivatives of G with respect to s are zero at s = ~-Qj, gives

- 1/ 1
N (36 . . s~ 36 D o5 2N
(-]) N-(S}—< dx + Z: SZ_- de + Z y dpj) ;
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form,

N
i oei o (i)W
5, = S¢ = __—BNG (119)
3sl
S:-qi

For zeros or poles which are written in root-locus form, the sensitivities are

{ .
- . Sl
R st = K
A Z2: T . - Q.
) J dJ 1
:""7 . (1 20)
R Sl
i _ __K
J 9; - Pj
For zeros or poles which are written in Bode form, the sensitivities are
i !
o 935k Bt
Z - = ~ ,;‘:r._::-:
R A K
(121) 0K
. qisl ..rw‘ .
sl _ K gﬁ’?ﬁa
s - o
P pyly -y R
RN
TRV
NN
‘-_".\‘1:'
Ve
PN~ '_:3

Note that the relationship of the zero and pole sensitivities to the gain sensi-

il

tivity is exactly the same as that for first-order closed-loop poles; Eq 120 is
identical to Eq 55, and Eq 121 is identical to Eq 75. It is also important to
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As pointed out by Ur in a similar development (Ref. 13), Eq 118 reflects b
the well-known characteristics of a branch point on a root-locus plot. The é}%
incoming branches, which at their junction represent an Nth-order closed-loop s %
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SECTION III

MODAL RESPONSE COEFFICIENT AND
GAIN SENSITIVITY EVALUATION FOR SINGLE-LOOP SYSTEMS

Modal response coefficients and gain sensitivities can be obtained in a wide

variety of ways from either open- or closed-loop transfer function representa-
tions. The representations most commonly available in a typical problem are:

Open-~loop Closed-loop

G(s) in factored form

Pole-zero plot Root loci, without complete sets

of compatible roots

Closed-loop ]Grcl p and IGreldb
asymptotic plots %when decompo-
sition method is applicable)

G(jw) Bode plot

G(*0) Bode plot (also serves as
a plot of closed-
loop real roots
versus gain)

Correlating the information appearing or all these common representations serves

to supplement the information available on any one. For example, a closed-loop

asymptotic plot, found using the G(xo) and G(jw) open-loop Bode plots
and the decomposition method, ylelds a set of roots which can be noted on the

root locus. Similarly, one branch of the root locus complete with gains might

provide sufficient information to allow a decomposition process to proceed using

the Bode represeatation. In any event, for most cases in practice the above

forms will be sufficient to provide complete information about gains and closed-
loop poles. For the unusual circumstance where this is not true, the following
additional representations may be necessary: )

Open-1oop Closed-1loop

G(s) in 1 polynomial form Root loci, with complete sets

of compatible roots

G(¢,u) Bode plots Root loei as functions of gain

with & as parameter

These vavrious forms of transfer function representation supply the raw data from

which modal response coefficients and sensitivities are to be found.
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The following discussion of modal response coefficient and gain sensitivity
evaluation is organized along traditional lines, with an individual article for
each general form of transfer function representation. The articles appear

under the headings:

A. Direct Calculation
B. Root-locus Methods
C. Methods Using Open-loop Bode and E Plots
D. Method Using Closed-Loop Bode Asymptotes

Ordinarily different formulas for modal response coefficients or gain sensitiv-
ities are most appropriate to a particular form of representation. However,
becavse of the supplementary character of the several transfer function repre-
sentations available, certain formulas work well with several representations.
Consequently some interplay at the detailed formula level is inevitable. In
practice this is even more prevalent, since each of the transfer function repre-
sentations available in a given problem is likely to be most suitable for
computation of a particular modal response coefficient. Thus, in a practical
problem one might get several coefficients from G(jw) and G(*o¢) Bode forms,

several other from a root locus, and the last one or two by direct calculation.

A1l the developments of this section are carried out for the general case
of an Nth-order closed-loop pole, but at a convenient step the results for the

specialized case of a first-order pole are often given.

To furnish a concrete example, all of the methods developed in this section
have been applied to a simple third-order system. The details of the computa-
tions are given in the Appendix. The example covers the use of the techniques
for closed-loop poles which are real and first-order, complex and first-order,
and real and second-order. The results, summarized in Article E, are also used

to illustrate the relative accuracy of the various methods.

A. DIRECT CALCULATION

Of the many methods presented in this report for the evaluation of modal
response coefficients and gain sensitivities, only the two given in this article
can readily yield values to any given degree of precision. All the other tech-

niques involve a graphical construction or are based on certain approximations.
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Eithker of the direct-calculation methods could be added to 2 digital cooputer

program for loop-closing calculation to provide the modal response ccsfficients
and sensitivities.

Tn Section II the modal response coefficients and gein sensitivities were
iy given by, among other formulas,

v

N Qi,, = (-1 )H-] st - __ _-HI (123)

o ,
3o,
ast e
5% |25
b
Evaluation of Eqg 125 is particularly convenient when the numerator and denomipator [
of G are known polynomials in s. Expressing G as =
2
S
L
¢ = = (12k) g
8
gives
oG 1dx 108
& " %as B (125)
and
2 2
3% _ o1 13%| |3\ (1 138 (126
32 (32 B 3s2 a 9s B s -5— B ds
From Eq 123 and 125 it is obvious that for N =
i Ka
“ 7 % % "% %
ds = Js
=-qi
= "3‘—? (127)
:':::: “3s * 5_ s=-q
o *
%f"i If N is greater than one, higher derivatives of G must be considered, such
N as BQG/BS2 (Eq 126). Repeated differentiation of Eq 126 combined with the Y
EE:'C: requirement that the first (N - 1) derivatives of G with respect to s vanish at '«’}1
o, Y
5 S = -q;, shows that ;
.
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- (L2 , k< (128)

f13% _13%
c~H PBM
. o . s
e 3%
" N
= Bs BS (129)
B S=-a5
N H
K a_.a' < é_B_
- Os os
Ka
- B
(- sp = mf——
L.‘.i K _a_a' + ﬂ i
& a3 e
3-:-: =% S
2 (130) R
'::T'f Ka :-_;_ ,r‘{

The second direct-calculation method derives from an alternate expression

for G, i.e.,

n
Kk II (s+ zj)

) (151)
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Then

3G 4{3‘.. 1 “f’ 1
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For H = 1, Eq 123 and 132 show that
i 1
Qj. = SK = n m+n (1 5!")

which is identical to Eq 59.
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For N greater than one we must again consider higher derivatives of G, such

ous
A,la, >

b

as Eq 133. Repeated differentiation combined with the vanishing of the first
(N - 1) derivatives shows that
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Consequently,

BNG N n 1 1 =
SN = - -1)¢ P B —_— 6 g
<BSN>S=-qi (-1)7(n-1) j%(zj . qi) j%(pj - qi> (136)
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The computation of QiN or SZ‘.( by Eq 137 can easily be set up on a standardized

work shcet and would probably be easier to use in a digital computer program
than 2q 130. It is also simple to show that Eq 137 is valid if any or all of

the terms of G are written in Bode form.
B. ROOT-IOCUS METHODS

Three methods of using a root-locus plot to estimate the modal response

coefficients and gain sensitivities are described in this article. The first

two are approximate techniques,while the accuracy of the third is limited only

by the exactness of the plot and the required measurements.

The first method requires the locations of the closed-loop pole for two

slightly different gains, such as the segment of a locus shown in Fig. 5a.

1 YS!
«.'*-" Using finite increments as approximations to differential changes, Eq 118 and
:f‘.:_:j 122 give
Vi N
; k(29;)
. i~ (.. =
S = (@ = —x (128) .
Equation 138 can also be utilized if the change in the closed-loop pole is f:.'f]
obtained by some other technique, such as from § plots and root decomposition. ‘\“_-‘
The second perturbation method is obtained by considering Kk to be a complex ,."?"?f‘;,
e
quantity. The normal root locus is then a graph of the closed-loop pcle loca- ;.}.::;5
tions for k real. Now consider a small perturbation in the phase of k. The Ev‘\fivj
-
closed-loop pole must then be perturbed a small distance normal to the conven- L;,}_J
L sakngl
tional root locus, and the phase perturbation of (G/k) must be minus that of «, S
see Fig. 5b. Consequently, for perturbations normal to the root locus, Mxfk = =308, ::;-:.f”
and Eq 138 becomes -,:‘x
. N ol
i _ N-1 . J(0a3) -2
S = (1) 4y = —zp (139) "%i%f
N
N
where A8 = phase change, in rad, of G/k N
ot
3 . i |
3 Note that for N greater than one the locus is not a single curve at s = -q;, but ACPr
is the junction of N incoming and N outgoing branches. 1In this case the Aqg; of “3‘:
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Root-Locus Perturbation Methods

a. Gain Perturbation
b. Phase Perturbation
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Eq 139 should be picked midway between any incoming branch and an adjacent out-

going branch.

The third method, which will be called the vector method, has the advantage
that its accuracy is limited only by the precision of the graph and the necessary
measurements. Of the graphical techniques described in this section, this one
should generally be the most accurate. Its primary disadvantage is that it

requires a complete set of compatible closed-loop poles, i.e., all the closed-

loop poles for a particular value of gain, and knowledge of the value of that gain.

From Eq 97 and 122,

N

i N1, N-1 (S+qi)G]

S = ()7 ey = () [—1T
S=-q‘i

n
OV I (2, - qy)
j=t_J

= i (140) -
(1 +wdp) I (a; - q;) :
i S
=17 S
g AN
wred
Ry
The right side of Eq 140 is a constant times a function which, with zeros at the f:¢§
open-loop zeros and poles at all the clcsed-loop poles except -q;, is evaluated m?f?w
e

fl
'y

T4
s
I
. 'r l‘ . “
PERY TR

at s = -q;. Thus, Eq 140 can be quickly evaluated using the normal graphical

E

root-locus techniques with a Spirule or similar device. The principal quantities
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£

for a sample system are shown in Fig. 6.

C. METHODS USING OPEN-LOOP BODE AND ¢ PLOTS

The derivative BNG/BSN, and consequently the modal response coefficient and
gain sensitivity, can be determined from cpen-loop Bode or § plots. A § plot ie

a plot of the amplitude and phase of G as a function of p for constant £, where

s = (s + 3V -2 )u (141)
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The conventional Bode diagram is then a special case of the £ plot (§ = 0).

Because £ plots, particularly for & = #1, are valuable analytical tools for
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determining the closed-loop poles, it is highly desirable to be able to determine

modal response coefficients and gain sensitivities from the § plots.

34ty " 'y
Sohrd 00

With £ held constant,

g PN

N ,.l;,

l}"“ %,
R

oG OlnG _ ,dlnudlnG (142)

and from Eq 141, dlnmp _ 1 (143)
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Equation 142 can now be written

o
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Sy (1kk)

The second derivative is then

¢ PG ,dnG d ¢
2 " P mpE dmuds ® (145)

Repeated differentiation combined with the vanishing of the first (N - 1) deriva- s

tives at s = -q5 gives =

N N I
ac . o _[mg (146) AW

as® () Pl Y

S=- q-i qi

Representing G in terms of its amplitude and phase, i.e.,

¢ = Aed? (147)
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allows us to rewrite Eq 146 as

T
P o
PRL AN e 3,

[

2R

'y
el
S

3 !«o‘ l‘-r‘?‘.

LA

(@E) _ o [fwma 2% ]
N - N N N
os S=-g; ("qi) _a(ln 1y o(1n u) s=-q3

-1 1 MNigh . g Mg ]
(-a))" 1(2.3026)" 3108 " (2.3026)" 3(108 )"

v
<

e U

Py ]

$7AL
(“‘
FWS

P

T

r3

— i
S—-q_i Y

\

A j Y5y

= P— [_N v 2 ] (148) A
(-q;)"(2.3026)" " |20 131.95

'a el
S=- qi e

N
where AN the derivative 0 log A in db

¥
o(iog H)N (decade)N }.4';: 3

N
) in deg

o(log ) N (decacle)N

the derivative

T

Py

‘..\
l. -].
AN

e

3
Ax;J -
o

e
4.3,
)

G
IR

Therefore for N = 1,

»

v
SRR

f""l"-'
s

r
<t gty

« e .u.(‘ )
¥

i _ ~93
S = § = [A] jQ)]] (149)

—_ } ———
20 7 131935 g,

tatal

y 2

»
AV

.
ety

and in general

-

N e bt A%
N ala® a

B

ok
t )
! el

< 4,2
o

&
]

-t (2.3026)V1 (g )"

..N - AN . jq)N
20 7 131935,

(-1 )N—1

e2]
x
|

(150)

r’.":.‘ .
e

Lty i o
P B
el ?1‘11‘41_

Thus, for a first-orler pole the modal response coefficient and gain sensi-
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€ plot at s = -q;. If g; is purely imaginary, a conventional Bode diagram is

' tivity can be determined from the slopes of the amplitude and phase curves of a .3
'
E used; if q; is real, a Siggy (¢ = #1) diagram is used and the ¢ derivative is
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;*'-._'_:‘ zero. For a complex pole, a £ plot or the shifted Bode diagram method, to be
vk
{“‘ g described shortly, must be used.

For multiple-order poles the higher derivatives, Ay and Py must be evalu-
ated. This might be done by:

A dae
iy
A -

/,
ARV

1. Measuring the slopes, A; and P from a £ plot

O A ek

2. Plotting these slopes versus log p

3. Measuring Ao and Po

4. Plotting Ay and @, versus log p

5. Repeating the process until Ay and @y are found

An alternate method for second-order poles is to measure the radius of curvature
of the & plots. The radius of curvature of a curve defined by y = y(x) at a

point where dy/dx = O (3G/ds is zero at s = -q;) is given by
1
R = T3 (151)

The radius of curvature can be used to determine Ap and @5, but care must be
exercised to properly account for the vertical and horizontal scales of the plot.

A simple method of computing Ap or @o is to:

1. Measure the radius of curvature (at s = -qi) in
the units of the vertical scale, i.e., db or deg

’l

2. Divide the vertical scale by the horizontal scale,
e.g., (db/in.)/(dec/in.) or (deg/in.)/(dec/in.)
3. Square the ratio of step 2 and divide by the radius

,,.,n
ot
% 1 3
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of curvature measured in step 1 :\ i

TS

An example of both methods for a second-order pole is given in the Appendix. f}\:‘&}
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An alternative to the use of £ plots for complex roots is to use shifted Bode g&%:%

diagrams. The basic idea is easily understood if one remembers that the shape of '_:.::.1;:

AN

7 a root locus is independent of the location of the origin of the coordinates. - }\
N, L ,-_‘ R
i:_; Consequently, the imaginary axis may be shifted an arbitrary amount without L3
@0 . . s . T
z:i;%’ changing the locus or the gain sensitivity. If the axis were translated so that %Z“-A
Q “a i ::
';.:{._3 it passed directly through a complex pair of closed-loop poles, the gain sensi- :IE:‘E
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Eq 150. Since Bode tezplates are readily available, and the Bode diagram is a
well-Fngwn analytical tool, the shifted Bode diagram may, at times, be easier
40 use than the £ plot.

In constructipg the Bode diagram the rezl parts of all the poles and zeros
cust be {ranslated by tke proper increpent. For poles or zeros on the real axis
this involves only an addition or subtraction. For complex pairs the shift will
ckange both the ratwrel freguency, @, and damping ratio, {, of the roots. It is
easily sbown that if the ireginary axis is shifted to the left (in the direction
of the negative real axis) a distance d = Re(q;), the netural frequency, wg,
and dexping ratio, g, of shifted poles or zeros are

VP - 2twd + @@

@

(152)
to-d to - d

£ =
i \[c?- 2'gmd+d2 %

Por {; equal to zero, i.e., d = {m,

(as)e o = o1 - ¢2 (153)

A third method using § plots is especially appropriate when the decomposition
loop-closure technique is applicable, although it also applies in general. The
basic idea is to find two sets of closed-loop break points for neighboring open-
loop gains. From these all of the i due to the gain change can be estimated.
Because &X/K = Ax/k, Eq 138 can be rewritten

.

- - K(2qy)"
si - (‘1)N1Q1N S — (154)

This technique is the Bode diagram version of the gain perturbation technique

discussed in connection with root-locus methods. Unfortunately, the method is
an approximation, i.e., differentials are replaced by increments, and may have
substantial errors if appreciable gain changes are used to develope the basic

LAg; data.
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D. METHOD USING CLOSED-LOOP BODE ASYMPTOTES

»
P
Wl

-4, .A...l,

~

AT

e,
*

‘
..x\‘- ..l' a
[

The amplitude asymptotes of the closed-loop Bode can frequently be readily
obtained by the methods of Ref. 1. These asymptotes can be used to estimate the

:

R
B
]
-
.

el

modal response coefficients and gain sensitivities. This is only an approximate

B

.l
.
‘a

technique, and for accurate results the closed-loop pole must be widely separated

in frequency from all other closed-loop poles (except its complex conjugate) and

from all the open-loop zeros.

>

3:3 From previous developments we have
YT n
izﬁ II (S + Zk)
K1 K k=1
A Gpo = (155)
= Ie (1 + K68) m+n
IT (s+ qk)
=1

and

n
K ,l'I (zx - 95)
Gy = (-8t - Bl (156)

(1+ k89 I (g - q)
k=1
ki

If -q; is a real root, the products of Eq 156 can be approximated by

n . XZ n-}\z
I (Zk - qi) = (-qi) I1 (Zk)
k=1 k
(157)
wHn g (m+n—N-lq)
H] (qk - qi) = (—qi) I;{I (qk)
ki
where Ay, = number of zeros of smaller magnitude than q;
n-i,
I (zx) = product of the (n-,) zeros of larger magnitude ;
k than g4 RN
xq = number of closed-loop poles of smaller magnitude . i‘
than qj A
(m+n-N-Aq) o
II () = product of the (m#n-N-1q) closed-loop poles of e

larger magnitude than q;
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Combining Eq 156 and 157,

A -\, D=\
f-a) 2 LI (=)

N-1.i - k
Qiy = (1) s = Tty (158)

(1 + ko) I (&

From Eg 155 it can be seen that the amplitude asymptote, Aasy’ of the closed-

loop Gy Bode diagram at a frequency equal to lqil is

A, D-),
I(lil z I}! Izkl
K
A = (159)
asy 1+ k80 |q.])‘q+N (m+ni_i\l-)\q) |
i k k

Note that several terms in Eq 158 and 159 are identical except for the absolute

value sign. Consequently these equations can be combined to give

A, FAgHA
z QM N
Nergg . ) 1) (a1)” &gy 5 9 Teal and >0
QiN = (—1) SK = }\u N (160)
(-1) (-qi) Aasy » g3 real and <0
where Ay = number of closed-loop, non-minimum-phase zeros snd

poles of larger magnitude than 4:, plus one if
k/(1 + k&Q) < 0

Note that because complex roots always occur in pairs, the powers of (-1) in

Eq 160, (Az#Ag*\y) or Ay, can be considered as the number of open-loop zeros and
closed-loop poles which, in the s-plane, lie on the real axis and to the right
of -q;, plus one if k/(1 + x3Q) < 0.

If -q; is a complex pole, Eq 158 must be modified slightly because the
complex conjugate pole has the same magnitude as g;- Then Eq 158 should be

written
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Combining Eq 159 and 161, 3580
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The technique outlined above, although highly approximate, is especially
easy to apply. Its principal merit is the quick, rough-cut view afforded from
visual inspection of closed-loop asymptotic Bode plots. The major effect of a
dipole (closely spaced pole-zero pair, qi,zh) can be taken into better account

by modifying Eq 158 and 160 slightly. For this one modal response coefficient

or sensitivity the factor (zp - qi) should be used in the numerator of Eq 158 in

place of one of the -g; or z) terms; it replaces a -q; term if |zp|<|q;| and

vy e Y
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replaces a z) term iflzh]>|qﬂ.
included by multiplying Eq 160 by [1 - (Zh/qi)] iflzh|<|qﬂ or by [1 - (qi/zh)]

if lzp|> oyl-

Consequently the effects of the dipole can be
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Further refinement of the technique is possible along these same lines.
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This is seldom warranted because the quick-view advantage of the method is lost
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and, even when refined, the technique cannot compete, on an accuracy basis, with
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the others discussed.
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E. EXAMPLE
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To illustrate the techniques described in the previous portions of this
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O
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&k

section, all of the methods have been used to compute the gain sensitivities

and modal response coefficients for a simple example. The details of the calcu- .
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lations are given in the Apperdix and the results are summarized here. %A

The example is a system with an open-loop transfer function given by N

o(s) = TEEFIET (163) RS
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A root-locus plot for this system is shown in Fig. 7. The calculations were
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carried out for two different values of gain, x. The high-gain case was
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selected to illustrate the procedures for complex closed-loop poles, and the

low-gain case illustrates the procedures for second-order closed-loop poles. In

,,F

L

s "o

addition, the actual shifts in the closed-loop poles due to the gain change are

Az
compared with the values predicted by both the high-gain and low-gain sensitivities. f:ﬁ
R
For the high-gain case, the gain was selected to produce a complex pair of éi%
closed-loop poles with a damping ratio of ‘/572. For this situation: R
K = 2.070 ;§§
Q-l = 5.099 .::':

@ = 0.450(1 - j)

0.450(1 + j)

[te]
W
]

o Or i S

For the low-gain case, the gain was selected to produce a second-order

3

T A TN

oy
LY

closed-loop pole. For this condition:

«

K = 1.128 géi

H

G = 505 3

gp = 0.472 (second-order pole) E:%

The values of gain sensitivity which were computed by e~ch method are listed EE!

in Table I. The values of SZ for the high-gain case are not listed because they ;{3
are the complex conjugate of S%. No attempt will be made to form any general iﬁi
conclusions on the relative accuracies of the various methods except to note :;ﬁ
that the values obtained by the root-locus vector method, which would be expected Eii
to be the most accurate graphical technique for this example, agreed very well iig
with the exact values obtained by the direct-calculation methods. ?&ﬁ
To get some indication of the accuracy of predicting the changes in closed- %éﬁ
loop poles from the gain sensitivity, we can compare the azctual shifts between }:4
the high- and low-gain cases with the changes predicted by the gain sensitivities. ii?
This comparison is summarized in Table II. Considering that the ratio of the two }(ﬁ
gains is more than 1.8, the agreement is generally quite good. The one relatively éé:
poor case is the shift in P predicted by the high-gain sensitivity. The pre- an
dicted change in the imaginary part of g, is only half of the actual shift. ﬁig
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SECTION IV

MULTILOOP SYSTEMS

A. MODAL RESPONSE COEFFICIENTS

The modal response coefficients for a multiloop system can be derived in a
manner quite similar to that used in Section II for single-loop systems. The

familiar expression

NS BN sl PO X (164)
Mg T W BT ok [ F W) Gl o

also applies to multiloop systems, but G,.. is now a more complicated function.

In general, Gy, can be written as

Fy
Grc = T+—F2- (1 65)

where FH and F2 are sums of terms which contain the transfer functions of the

various individual elements in the system.

As in Seciion II, define

N
(s + q.)F,
RO e (166)
or (1 +F)ar (s) = (s +a:)'F (167)
2)Qils) = 4) H
Repeated differentiation of Eq 167 shows that
3 F,

= 0, 1<k<N-1 (168)
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and Uy = Byl = | (169
=-qi
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A relationship for the summation for the modal response coefficients can

also be derived in a manner analogous to that of Section II. If there are no

multiple-order closed-loop poles, and if the number of closed-loop poles is

greater than the number of closed-loop zeros, we can write

Gpe = 2: E?éﬁa; (170)

.
-
4
Y33

[ &¥

5
VA
Gl

a

A
-8 ged
R),

Multiplying both sides by s, and letting s approach infinity, gives

Ker, if number of closed-loop poles = 1 + number

of closed-loop zeros ]

2 = . (n) i

3 0 if number of closed-loop poles > 2 + number \5;:3

of closed-loop zeros L

t\"\hi'&{

L

[ armatmn]

. . . . . @uﬁm!

where Kor, 18 the closed-loop root-locus gain of the system. This is directly PR%H
analogous to the result obtained for the single-loop case. %§QE§
:."- ‘i'l'\"xq

When there are Nth-order closed-loop poles, a result analogous to that for Eéiig
single-loop systems is e
K

RASRNY

Ry

K if number of closed-loop poles = 1 + number el

CL S

of closed-loop zeros AR

2.9 + E:Qi1 ) (172) NG
5 T 0 if number of closed-loop poles > 2 + number ey

of closed-loop zeros

B. SENSITIVITIES

For multiloop systems the closed-loop poles are functions of the gains, as
well as the pole and zero locations, of a number of transfer functions. It is
then desirable to know the sensitivity of a closed-loop pole to variations in

the gain, poles, and zeros of any of the transfer functions. To derive these

sensitivities, consider the characteristic equation of a multiloop system,
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[1 + (F2§] = 0 (173)

S="q_i

where Fo is a summtion of terms, each of waich is the product of various trans-
fer functions. To keep the discussion completely general, the transfer function
of any individual element in the system will be denoted by G. Naturally the
functional relationship between Fo (or Fﬁ) and any individual iransfer function
depends on the manner in which the various elements are connected. This func-
tional relationship can be determined from a block diagram or signal flow diagram

of the system.

Extending the notation to the gains, poles, and zeros, kg is the root-locus
gain of the kth transfer function, and (’ij) and ('ij) are the jth zero and
pole of the kth transfer function. The total differential of Fo can be written
(analogous to Eq 116 and 117)

N
OF
(ng)s__q. = 0 = -1\}—!(3 N2) (-dqi)N
=43 S S=_qi
L OF, [ 36, g 30y 0y 36y
+ g, + dzy. + apy . (17%)
[k§1 B—G;(&‘Z 5 ag By 0 Jg %Py s=-q
="
or

o 3 mety g /¥

(1) & OFp foG Gy K

dg. = d dz, . + ap. . 1

4 [BNFz/BsN 1;Z=: 3y \ Ik, 7 JZ=:1 Szkcy j§ épkj 7S o q( )
=-q;

where np = nuamber of zeros of kth transfer function, Gy
metnr = number of poles of kth transfer function
L = number of transfer functions

Note that as per Eq 168, the first (N - 1) derivatives of Fo wita respect to s

have been set equal to zero.
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As in the single-loop case, we will define the sensitivities so that

I :E
o
1/N et
+n
L (. dk Kk 5
dg; = Z gt _k + Z Sl dzk + Z Spkdbk (176) :E::':f
1 Kk 4 o
k=1 © =1 oo
s e
a5
o]
&

7

Equating like coefficients of Eq 175 and 176 gives

4.
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ML IR
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_ (- 1)J+1N| 8F2 aGk
G = [ me o 3k
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=-qi
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(178)
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= |5 (179) il

N - =-qi

(180)
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ias

kL A If the transfer functions are written in root-locus, Bode, or mixed form,

A

o 36, >

P_._'... Gk

Y = =

2at Ky T Ky 3, Gy (181)
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Consequently,

|t
R

1l
() B |
e
Q/
g%1£?L§4N?

S

=-qi

(182)

(183)

For zeros or poles which are written in root-locus form,

S T
i J

oi

pk,j _ 1

Sik - ij(zkj - qi)
i

(184)

(185)

(186)

(187)

Two important features of the above sensitivity ratios are worth mentioning.
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to the first power, Gi(OFs/dG,) will simply be the sum of all the terms of Fo
which contain Gx. Thus, the ratio of the gain sensitivities for Ky and K will
be the ratio of tke terms of Fo in which G; and Gy appear, evaluated at s = -qj -

Second, the ratios of zero or pole sensitiiities to the gain sensitivity of the
same transfer function are identical to those for the single-loop case. (Conse-
quently, the previously derived {Eq 78 through 81) sensitivity relationships in
terms of the damping ratio and frequency or the real and imaginary parts of an

open-loop root also apply to the multiloop case.

Because the normal procedure for evaluating the closed-loop poles of a multi-
loop system is by means of a series of loop closures, the above equations can be
utilized to form a relatively simple procedure for evaluating the sensitivities:

1. Calculate one of the gain sensitivities by applying one
of the methods of Section III to the final loop closure
2. Compute the other gain sensitivities from Eq 183
5. Compute zero and pole sensitivities from Eq 78, 79, 80,
81, 184, 185, 186, or 187
In many cases step 2 of the above will be the greatest source of computational
difficulty. No simple standard procedures can be established for this operation,
but there are several ideas which may be helpful. One of these is to make use of
the fact that at s = -q;, F; = 4. For example, if Fo were

1?22 = (}1 (}22 + (}1 (§3§3}¥ + (}] (}22(}35 + C}3§}1+

then i
S
Tky ( GyGp + Gy Gols ) _[é1G2(1 + Gs)
i GyGpy + GyG56), + GGG T+ GG,
K 3 3 5=y H 3 s=-q
gi
ks G650y + GGaGs + Gx0y i (1 + GG,
E;i: (}1 (}22 + (}1 (}Ef}lk + (}1(}22(}35 1 + (}34}1;
1 s=-q; s = -q4
i
ff& i G160, + GGy _ G5G4(1 +G,)
sk, GiGp + GyGsGy + GGG T + GGy,
S=-q_i s=-qi
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The sensitivity ratios could be computed directly by setting s = -q; in the
proper equations, but for complex poles graphical methods may be simpler. The

products of transfer functions could be evaluated hy constructing g plots or

root-locus-like plots. From the known zeros and poles of the transfer functions,

T
p

a & plot could be constructed for § equal to minus the damping ratio of g;. The t
construction would only have to be accurate for the frequency equal to |qi| . L*::EE}
The amplitude and phase of the product of transfer functions can also be evalu- g_;;‘
ated by plotting zeros and poles on an s-plane graph, and measuring the amplitude f”"‘?ﬂ
and phase at s = -q; - Once the products have been evaluated, the summations l%:
with unity, which are sometimes necessary, could be done numerically, from a ::"g}

5 X

Ve l"
kA
‘,

Nichols chart, or graphically (preferably on polar graph paper).

As in the single-loop case, a useful check on the sensitivity calculations BAAS)
is that the sum of all the zero and pole sensitivities is one if the transfer :
functions are entirely in root-locus form and if N equals one (-q:L is a first- NN
order pole). This can be shown from Eq 182, 18%, and 185. %
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vl e

}Ij % . : ZL: dF, [k : o
S + = Gy —— ————— X .,:A».
Sy J§ Spi Ty 2 k| L S
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The derivative OF,/ds can be written as

(apg) ZLZ (aF2 ack)
s, s=-qy iy \ 3Gk 95, s=-q3 :Ij'&'i

ZL: ( OF, nzlf 1 mk;:n ooy R
Gk T as + — (1 89) _:.:}“»:."!
k= rG’k s=-q; : ZkJ Q3 Qi - Pk A i

J= J=1
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The relationship betwesn the geain sensitivity ard the modal response
coefficient can be seen directly from Eg 169 and 182.

QG = (4 ) (a;;—m) Sfrk (191)

For 2 multiple imput-cutput system tkere will be a set of rodal response coeffi-
cients for each input-cutput cosbimation. Al the coefficients can be evaluated

by meamns of Eg 191 if tkhe proper numerator, Fy, for cach imput-cutput pzir is used.

C. EXAWPIE

3
s e
[}

_:—_«).::; The adtitude control system of Ref. 2 will be used as an exarple. In that
~'_'::;‘: system, pitch angle, 6, and altitude, h, are fed back to the elevator, Fig. &.
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Figure 8. Multiloop Example

in Rig. 8, 25 and Hy are the airfrare pitch apgle and altitude trensfer functions,
- Y ard ¥, are the equalization and sensor dynamics, and Yg is the elevator servo

. dynamics. Fron Fig. 8 it can be seen that the closed-loop transfer function is
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For convenience, the notation

G = Y fg
Gy = Yg (193)

will be used. The form of the transfer functions and numerical values which were

used are: NI
1 1 1 £z
KaAh (s + ——) (s + -——)(s - ——) o
. T\ M)\ s :
1 = =
(s + ay)s(s2 + 2mps + aB) (s + 2 gpagps + o) '
6 = 5——B (154)
s +2§m%s + ap
. 1 1
(S + (DL) (S + _T-C_)(s + -T—.:—)
v‘i 42
G5 = KeAe > -
(s= + 20pms + u)—%)(s2 + 20 spwgps + ugp)
where KoKy = 127.5 §m = 0.7
A, = -69.8 o = 50
1/Th, = 0.006% Koky = 2700
/Ty, = z/Th3 = 15.2 A = 26
“é_ = 15 (1)L = 2.k
¢ = 0.0T1% 1/T91 = 0.0058
p = 0.065 1/T92 = 1.372 E
Cop = 0495 i
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The characteristic equation of this system is

i
o

(1 +GyGp + Gol3) _ (195)

- qi

The technique for determining the closed-loop poles which was used in Ref. 2 was

to rewrite the characteristic equation as

0 (197)
s(s + ay)oyp
=-qi
where L;; contains the poles from the 1 + G2G5 inner-loop closure, i.e.,
by = (52 + 26 ays + aﬁ)(s2 + 20, 4-a§)(52 + 2§sp“%ps + w%p)
1 1
+ KpKAg(s + )(s+——)(s+——) 152
mKeho @y, TG1 T62 (:52)

(s + 0.011)(s + 1.05) (s + 5.5)[s2 + 2(0.32) (35)s + (35)2] (s + 47.5)

When the final closure is made, Eq 197, it is found that the dominant closed-
loop poles are a complex pair at approximately s = -0.287 = j0.869 (w = 0.915,

= O.51h).* The sensitivities for this system will only be determined for

[T

these dominant poles. Actually, only the sensitivities for the pole,
-0.227 + j0.869, will be computed. The sensitivities for the zonjugate root are

the complex conjugates of the computed sensitivities.

*These values for the closed-loop poles are slightly different from those
given in Ref. 2. The values given above were obtained by using a more accurate
approximation tc the closure than was done in Ref. 2.
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The first step is to determine one of the gain sensitivities. The simplest
one to do is the one for Ky (the gain of G1) using the closure defined by Eq 197.
Any one of the techniques of Section III could be used to evaluate S§1, but
because all of the other sensitivities will be computed from Skﬁ, we will use

the exact analytical expression

-1

Sk, = [Z —;q; - ¥ ;—1——;] (199)

k %k x Px ¢

where -p, and -z) are the poles and zeros of G1G2/(1 + G2G3), see Eq 196 and 197.

This computation gives
-(0.175 + 30.492)
. 70.4
-0.521 exp (; 5?73) (200)

i
Sk,

For the sake of brevity, we will adopt the notation

2ed® = 3 4 9 (201)
and express S%i as S%l = 0.521 4 250.L4 deg (202) A

Note that because F; = GiGp = Gy (3F5/3Gq ) , Si1 is equal to the modal response Iy
coefficient for h/hc. .
ETSS|
As the next step, Siz and 8%3 will be computed. From the sensitivity ratios PACR!
of Eq 183, L
ST
s} G,G, + GG o
Ko 172 © 72v3 -1 Eo
- = | —a (203) 6%
gl G1 G2
Ky S=

—q'i S="qi

- sk G0 G K
TG __5_ = ._2_2 = b, (20!{.) B
"_' - Sl G»] G2 G‘I > :

Ky s=-q4 s—-qi_ <o

[ by

., .A‘-_".J .

S

> %

7 ten s
L
P a

P
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By plotting the poles and zeros of Gy and Gp on an s-plane plot, (G1G2/K1K2)S__q_
=43
can be measured with a Spirule or similar device. Multiplying by the gains gives

s,i<2
—— = 0.160 & 53.3 deg (205)
Sl
K
Therefore,
s,fgz = (0.521)(0.160) ¥ (250.4 + 53.3) deg

0.083%5 4 303.7 deg = 0.046% - 30.069% (206)

Similarly, by plotting the poles and zeros of Gz and 1/G1,

S% G
—= = (= 0.965 & 172.4 deg
si Gy

I

K] S=—q_i
s% = 0.50k ¥ 62.8 deg = 0.230 + jO.hu6  (207) Y
AT
Cd N
From Eg 203 and 204 it can be seen that Sk1 + Sk3 - Skz should be zero. Using Ei::i

)‘.“ .
l; v

the computed values gives

S

ESTSE
i i i . ;
Sk, + sK3 - s,.<2 = 0.009 + jO.023

Considering the graphical techniques used, the agreement is quite good.

g b
.

= Now the pole and zero sensitivities can be computed from the simple sensi-
N
ég\ tivity ratios of Eq 184t and 185. The results are summarized in Table III. It
%{: was noted earlier in this section that the sum of all the pole and zero sensi-
---‘
L og'

tivities of each closed-loop pole should equal one. The actual sum of the
sensitivities of Table III is 1.009 + jO.029. This agreement is excellent
considering the inaccuracy of the closed-loop pole, the graphical techniques

used in the calculations, and the fact that the numerical computation was all
done by slide rule.
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TABLE IIX

ZERO AND POLE SENSITIVITIES FOR MULTILOOP EXAMPLE

TRANSFER
FUNCTION

P
SENSITIVITY
(z)

oy &
%04 58NN
LN

.
ety

ok

1 0

0.568 2% -37.9 deg 0.448 - jo.3u8

15 0.0353 & 67.0
0.0045 + j0.0628 | 0.535 & -36.4
0.609 &4 -38.8

0.1058 & 2.0

0.014 + jO.033

0.431 - jo.’:7
0.475 - j0.382

0.106 + jO.00k4

0.0045 - j0.0628

2.10  + j3.T1

TN .., -
o 2.10 - 33.T1 0.1547 ¥ 127.9 = -0.095 + jO.122 N0y
N2 N
:;}_: (0.0064) 0.571 & 1%2.5 = -0.452 + jo.347

(19.2)
(-19.2)
3.0 + §35.7

0.0275 % -112.2

0.0267T 4 T3.0
0.001654 177.2

-0.010
0.008

0.0004

jo.025
jo.026

jo.0016

3.0 =335.T
3 0.0045 + j0.0628

0.001704 168.8 = -0.0017 + jO.0003
0.516 3 136.0 = -0.371 + jO0.358

0.0045 - j0O.0628 | 0.590 & 133.6 = -0.406 + jO.h426

PrameRggm
2.10  + j3.71 0.1023 & 174.4 = -0.102 + j0.010

» X
e

2.10 - 3j3.7M 0.1492 4 300.3 = 0.075 - j0.129 <

v x ¢
-lil""

1} ('. “
LA

(2.4) 0.221 & Lo.h = 0.168 + j0.143

.l'
»
[y
A
»
Fy

(0.0098) 0.552 & 315.1 = 0.391 - jO.389

(1.372) 0.361

5 2k = 0.33%0 + jO.148

-

\_.7'.:-.;_'\‘ R A
TN TR
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Note that the phugoid (wp) and short-period (wsp) poles appear in both Gi and G3. o
Consequently, the total sensitivities of these poles is the sum of their sensi- R

tivities when considered as poles of G and of G3. It is also desirable to e
convert the sensitivities for the complex-pair poles to damping ratio and
frequency sensitivities per Eq 78. The final sensitivities of all the variable
parameters are summarized in Table IV. The gain sensitivities are separated
from the pole and zero sensitivities as a reminder that gain sensitivities are

based upon fractional variations rather than absolute variations.

TABLE IV

MULTILOOP EXAMPLE SUMMARY
g = 0.287 - j0.869

GAIN SENSITIVITIES
Parameter Description Sensitivity
Ky Gain of altitude feedback -0.175 - jo.h92
Ke Gain of pitch-angle feedback 0.230 + jo.hh6
Kn Gain of elevator servo 0.046 - jO.069
Ay Gain of Hg -0.175 - jo.k92
Ag Gain of 6y 0.230 + jO.446

POLE AND ZERO SENSITIVITIES
Parameter Description N%gigzl Sensitivity ;53
a, Altimeter lag 15.0 0.014 + j0.033 Zif%
awy, Lead in pitch-angle feedback 2.4 0.168 + jo.143 ;}iﬁ
tu Damping ratio of elevator servo 0.7 -0.0019 - jO.002k4 P
Wy Frequency of e evator servo 50.0 -0.0018 + 3j0.0028 %ﬁﬂ
1/ First zero of Hg 0.006% | -0.452 + jO.3hT e
/Ty, Second zero of Hg 19.2 -0.010 - j0.025 o
1/Th3 Third (unstable) zero of Hg 19.2 -0.008 - j0.026 ;ij?
1/Te, First zero of 6y 0.0098 | 0.391 - j0.389 g;;
1/Tg, | Second zero of 6g 1.372 | 0.3%0 + jO.148 s
¢p Damping ratio of phugoid mode 0.071% | 0.008% + j0.0053 §f\$
@y Frequency of phugoid mode 0.06% 0.0121 - jO.00L45 \fij
Csp Damping ratio of short-period mode | 0.493 | -0.018 - j0.028 s
W Frequency of short-period mode 4. o7 -0.025 + j0.025 é&@%
2 |
..:'_-._\
[ w2
i
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N
An examination of Table IV reveals a number of interesting bits of informa- N “i

tion:
1. The gain sensitivity of k, and A, is nearly equal to the
negative of that of k, and Ay

2. The gain sensitivity of Kk is much less than that of the
other gains

3. On the basis of the same percentage change in parameters,
the dominant mode is most sensitive to ay, wy, 1/T92,

1/Tng, and 1/Tn,

We now know which parameters are the most important to the dominant mode of the

system, and can estimate the variations in the dominant roots which could be
achieved by changing the gains. By combining the above results with "approxi-
mate transfer functions" or an equivalent technique, which can relate the zeros
and poles of the aircraft transfer function to the stability derivatives, we can
estimate the changes in the dominant roots due to variations in the flight con-
ditions and due to uncertainties in the inertial and aerodynamic characteristics
of the vehicle.
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SECTION V

SUMMARY

A good many derivations and relationships are scattereé throughout this
report. To facilitate the use of the material contained herein, the important

results have been summarized in a number of tables which are contained in this

section.

Table V lists the relationships between the modal response coefficients and
the system responses for various inputs. Part A contains the relationships for

N =1, and Part B contains the general relationships.

Table VI lists a number of useful identities. Part A lists- the identities

for N =1, and Part B lists the general identities.

Table VII contains the sensitivity ratios. Part A is the ratios for zeros

or poles which are in root-locus form. Part B is the ratios for zeros or poles

in Bode form.

Table VIII summarizes all the methods for computing gain sensitivities which
were developed in Section III. The table lists the pertinent equations along

with some of the advantages and disadvantages of each method.
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=1
. i _ i
A Sk = SK
"", =
2, Single Loop with Unit Feedback
x nfl K , m=1
. Q =
~! Q = Sk : i=1 0, m>2
1 , k>
K(by-a3+k) , m=1 wn Q. K
m-n Z q]—' = T + K D) k, = 0 m Z 1
Z Qq; = -K >, m=2 4§57
i=l 0 , k=4
0 s, m23
win Q.
EO = 1 - 8}'
i=t 4
. min Q.
+1 1 .
By = (M7 X —F s 340
J i3 J+
= qi
noo. min | A
Z Sth + Z Spj = 1 , all zeros and poles in root-locus form 2';}“1*
J=1 J= DA
NS
Multiloop "_i:r-“:.
%
o i o
. S S
R Ry e Ky T
S=- i » S
o :
h",: K number of closed-loop poles = 1 + number of
e E CL ’ closed-loop zeros
""‘:-: 1 % = number of closed-loop poles > 2 + number of
S T 7 closed-loop zeros
F L}
*'\ W
SAN
DR L [k S
ﬂ_,:: Z Szk- + Z Spk- = 1 , all zeros and poles in root-
Pt k=1 \j=1 J J=1 J locus form
2 2
b
AR
oo, 83
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IDENTITIES

N-1 i
_— (-1) Sk

0
=
5
g

GENERAL
n
k+1+h] 5=

Single Loop with Unit Feedback
number of closed-loop poles 2 2 + number of

number of closed-loop poles
closed-loop zeros

closed-loop zeros

0o & Y
h -l -n h'.
- A o

)
)
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o1
0
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N-k-1
2
h=0
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2(w - £q;)s

o§ - 2Laq; + of
2aq Sie
- 2wy, + of

TABLE VII-A

@
2
94

SENSITIVITY RATIOS
2. -
kj
9
*+

ZEROS OR POLES IN ROOT-LOCUS FORM
k
k
- pk

oy .~ 3 ol 3N ol 3 o QmD

Use upper sign for zeros, lower sign for poles.
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TABLE VII-B

¥

“
8
f

e

SENSITIVITY RATIOS
ZEROS OR POLES IN BODE FORM

i

'

H

3

?
13
S

q;S%
lKk

zkj 2 5 (ij - q3)

i
a;5
17Ky,

ij (qi - ka)

* i RS
; t2q; (to - qi)sk Fass
@ Q§ - 2faq; + o

XN, A
-, L
et LS )
Viwes L0 2

AN

*_ i
+2q_id)SK

q% - 2’5‘”‘11 + of

w
oy
1
SER

-2

¥

3
3
¥

a .I

s
ety
5, 1,78

i

K

PN
s

PP
[ A

.
£

*+2q; [|(@2 - b2 - ag;)s

'S
3
.

5

i

i

a2 + b2 qi-2aqi+a2+b2
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TABLE

METHODS OF COMPUTLN(

EQUATIONS
CLASS METHD — -
X =1
Direct calculation Nuzerator and denominator Si = —4‘-"—-—1 S1 -
derfvatives < L S&, 2 ®
s © oS
Usaugy
5 ] N £
. '["s?—é‘s . (1)
L de =
Ss ~ Ss P-i- )
Js=-qq 3et =
H S T TI \ : L, 1
Suzmation of erms s, = pM (_ — ) - 2( \ S, = 8 E(—-——) -
J=\2y TS jaley - qill =1 \%g ~ Sy
. \N
Roo Gat :rbatd st o2 X st : x(eay)
oot locus n perturbation c ° x ¥ —Ex—
Fha urbatd s s 48a, i . J(lll;g)H
Phase perturbation A S, & =g
w1 B
K n‘ \23 - qi) (-3 '« -
r L. - SR | B,
Vector s, =*n 5 = =n
(1 +xQ T (q‘j - q) 0+ xsg) n-
J=1 J=i
JH 3#
q Nt (
- =N (2. &) ~
Open~1o0p Bode and Successive slopes Si . — s1 = .‘\_(2 3026)
¢t plots [A;‘. R I9 K Ay 3%
20 13i.93 s2-q s
48y 1 vertica} sc,
Radius of curvature Not applicable dx2 = R\ Torizontal <~
Shifted Bode wg = Vof - 2w + @2 wg = Vf - 2uid ¢ :
v o o= d L fw-d
is ™ Se h——%
1, Koy g . Koy
4 urtation 2 e =
Gain perturtatio SK X Sx =%
PV I N-i#hgr »
Closed-1cop Bode Amplitude asyrprotes (1) a4, Mgy » g resl and >0 (-1)
i . LR . i . Ty,
S, 2§ (1) Vg AL » qq real and <0 s, 3 { (-1) "o,
2
1079, \M2ra | Ay Maf "%
(-1) u(—-—‘) 29 3. Casy » 9 complex (_1)1 L\“(_q-.)
|‘1,_| 2§ In (qy) ..
-




TABLE VIII

HMETHODS OF COMPUTING GAIN SENSIT:iVITIES

EQUATIONS AcCumacy
ZXACT
=1 — APPEZ
GENERAL Nuzerical anhicaIA
i xe 7 { X1, re
| EE I s
9s o8] K —
S=-q¢ s
- N, 8
- [‘9-% @ SR B »
s Seung K%
i 3s
=" L, 1 st s on (_ ) -3 )
AR J=:(PJ qx) X AV T %) jaly t Yy v
T o ;e
K - K AK \/
B 3éqq g J(Mg)n
25 « ° T &% v
n N-1 n
K lel (ZJ - qi) . "« 1 (23 - q)
= =40 S, = gil’
: o ¢ =41
f:‘k.l;‘ O+ Q) JI;II (ay - ap) (1 + x8Q) Jn1 (ay - qy) v
L X by
3_}-;:3 JFt I
X - -
}j-‘) . B-1, W
*,‘1": ) a o . -fi(2.3026) {q,)
K] A J‘Pl L) I
26 ' 131,93 [—N * T ] v
se-gq 20 " .93,
2
? dcy 1 [_vertical scale
. applicable e TR (hor:zonwl scale) v
= VoP - 2pa + a? wg = ¥f -2 v &
g - eod g o= - d v
\ LS \,‘l (Ds s g
Sy . -
Ry B
{“, Koqq s K(oa,)
s, 2K K &K v
A, AL 6N Nel4dh, A g+
z . 2 Mgty :
-1 1t g Aysy » qg real amd >0 (-1) (qi)x Agsy » q real and >0
(-1 o, . Ty, (K
-1) q, Aygy s Gy real and <O s, 5 { (-1) (a))” A, » q; real and <0 v
2 eN
19y /-5 \M2hg g 1% Ay, ST 2 I Y )
{-1) u(—‘) 1 ASY o complex HR“( qi) 4 3 ag
i £ (-1) _— » Qy complex
lal/  25m (q) T s 1= (q0F
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VIII

GAIN SENSITLVITIES

ACCURACY
=ACcT REMARFS
.. APPROXIMA
CENERAL luzericai | Graphical
1. Sizplest nuzerical zethod for lovw-order systexzs.
=
2. Requires open-loop nuzerator and denczinator polynonials. f:
e
NI
= ad .
e e
= J a7
):l(;.. = qi) ‘/ 1. Sizplest nuserfcal =ethod for high-order systecs.
¥
v 1. Sizplest root-locus method. 48 easily obtained with Spirule.
1) 1. Ordirarily the most accurate graphical technique.
Y v’ 2. Requires cozplete set of compatible closed-loop polese.
EL 4
v
oin
ai
1 v
By
\ el
" 1. HNeed only the portion of the Bode or § plots about |G| = 1. . -
) / 2. Accurate measurezents of slopes or radii of curvature are
frequently difficult %o obrain.
\
1. Method {s simple and speedy when decozposition technique is
npplicable.
v
2. Sensitivities for all closed-loop poles can be computed from
one gain change vhen decozposition technique is applicable,
! 1. Method is ordinarily sizple and provides quick overviev when
3 )“' Assy sy Gy real and >0 clused=1loop Bode usymplotic plot 15 availadble. hid
2. The closed-loop pole must be widely separated in frequency ’
from all zeros (except dipole zero, -zj) and from all other N
;9 real and <0 / ciosed-loop poles except iis complex conjugate; to correct
] IQN,\ for dipole, multiply sensitivity by
1 ! agy z Q
» Gy cczplex () - —h)u‘ zuf < gl or (l - -—‘)if <l
[23 In (qi)]N o lzn B 7y lagl !h|
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APPENDIX

SINGLE-LOOP EXAMPLE

The use of all the methods for computing gain sensitivities and modal response
coefficients will be illustrated for a simple example. The sample system has an

open-loop iransfer function given by

G

s(s + 1;(5 + 5) (a-1)

The computations will be given for two different gains. The high-gain case

illustrates the procedure for complex closed-loop poles, and the low-gain case

v )
DR
1 x

is an example of the computations for a second-order closed-loop pole.

s-f-‘

Foo

A. HIGH GAIN e
-

\_-:7:

For this case the gain is set so that a pair of complex closed-loop poles @
with damping ratio of ‘/5/2 exists. For this situation the important parameters o
K = 51\/2? - 156 = 2.070 %‘

£

q, = /26 = 5.095 -::

!
vl

‘l ‘x_‘.‘
= 5 (6 -4/26)(1 - j) = 0.4 -3 A
w = 5 (6-4/28)(1 - j) 50(1 - §) CE
1
az = = (6 - 426)(1 + 3) = 0.450(1 + j e
5 = 3 (6-4/200(1 + ) 50(1 + J) =
S
Be==
1. Direct Calculation el
0
Using Eq 127 for the numerator and denominator derivatives method, :"’_
g;-.:
_ a1l Ko
Q’i - SK - (K 5“_*_55) (A-2)
ds = Js
S=—qi
From Eq A-1, o = 1

3% - EZ
B = 80 +65° + 5s :
g—z = 3% +12s + 5 e
o
N
KR
89 o
In¥en

R A A
'h:.'-‘:\-;_\}\- ":“1‘{'-." -y
TR CARRL ) S Rt



Therefore,

o - & - X (a-3)

.
a5

Using the value for ao gives

SAnETA
r

-
r

o~
o'

_ g2 _ _ -2276 + 701 Y26 + j(8112 - 987Y/28)
QQ K - 6290

= -0.0k7h - jO0.490
= 0.492 % 26L.47 deg

where the abbreviated notation
Ayo = net?

has been adopted.

Because q, is the complex conjugate of Ao, Q,3 and 82 are the complex conju-
<
gates of Qy and SE or

_ =3276 + 70126 - 5(8112 - 987V28)

3
S 6550

K

Qz =
= -0.04k7h + j0.490

= 0.4923 95.53 deg

Using the value of q; in Eq A-3,

1 _ =376 + 70126 _
Sk = 5755 = 0.0949

As a check, recall that in Section II (Eq 19) it was shown that i‘ there are

no multiple-order closed-loop poles and the number of system poles is greater

than the number of zeros by two or more, then the sum of the modal response
coefficients or gain sensitivities is zero. These conditions are met for this

example, and we can see that the values do sum to zero.
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The second method of direct calcula

uses Eq 134, i.e.,

tion, called the summation of terms method,

These computations may be performed in

—

Sk

i _ 1 _ cuet
Sk = = , Ig:n 1 (A-4) .
k}=:1 Zx " U o Pk T Y

)M s

Naturally the results agree with the first method because both methods are exact.

N 1_\1 \)

the following manner:

1

bx (Pk - q2) m
0  -0.45049 + jO.hs5049 -1.1099 - 31.1099
1 0.54951 + jO.45049 1.0883 - jo.8922
5 k.5h951 + jO.4s5049 0.2177 - jO.0216
1
—) = 0.1961 - j2.0237
:E:(£k ) 92)
sﬁ = -0.047k - jO.490 = 0.h92 X 26L.47 deg S
SZ = -0.047h + jO.490 = 0.292 4 95.53 deg E:§§
e
i
and (e
(7 - ) —1 =
% T Py - % i
0 -5.09902 -0.1961 o
1 -h.09902 -0.2440
5 -0.09902 -10.0990
1
= -10.5391

)

0.0949
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2. Root-Iocus Methods

The root locus of the example system was shown in Fig. 7. To estimate the

Y

X gain sensitivity from Eq 138, a position on the locus of -0.41 + jO.76 was 5=
{;ﬁ chosen. The measured gain at that point was 3.89. This gives an estimate of 'L:
SN ..
E:’.:_;‘ hQ
~':\'~ ) g
2 2 2 @2 o [0b - j0.76 + (-0.55 + jo.bs)] e
kK = & = =0 3.89 - 2.07 o)
) S
oy = -0.045 - j0.353 = 0.356 % 262.7 deg ,,2
L e
N L
which has an amplitude error of 28 percent and an angular error of 2 deg. o]
| S el
e I
,Qé For q; the point -5.42 was selected, and the gain was 10.06. Then fm
A% e

R i
A 1 .+ 2.07(5.%2 - 5.10) _ fHa
% S = ~7o.06-3.07 - 0985 =3
ey

et
et
ap

X

Despite the fact that the gain was increased tc nearly 5 times its original value,

i,
L]

the estimate is within 13 percent of the exact value.

-4

e

To obtain estimates from Eg 139, perturbations normal to the locus were con- iﬁﬁ

sidered. For q, the point -0.64 + jO.4t7 was selected, and the measured phase
change was -2k deg. Then

R e

a
2
Ao e

o~
f
>
Pl
OBty

o . dlap j[0-6% - 30T + (-0.45 + jO.k5)]
K — -

08 -24/57.3
-0.0477 - jO.bsk = 0.457 x 264 deg

v

S

*x

g

g

,

4
.
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v
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This estimate is fairly good; the amplitude error is 7 percent and the angular

error is less than 1 deg.
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For a the point -5.10 + jO.10 was chosen. The phase change was 47.5 deg,

5%
i
;}i .

SO

< aE
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Ak

s & _3010(57:3) _ o

47.5
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This estimate is in error by 27 percent.
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The third means of determining sensitivity from the root-locus plot is by
the vector method, Eq 140. For the example,this equation reduces to

sl = K
K (ap - q4){az - q1)
2

K
K 7 (g - allaz - gp)
The following were measured with a Spirule:

:
(a5 - 94)(az - 94)

0.0459

ey
LN PR NN |

",

0.237 & -95.5 deg

e
m e S Y

1
(q; - ap)(e5 - a)

which gives

1 -
S, = 0.0952
$2 % 0.490 % 264.5 d
« = 0.h90 % .5 deg =
e _’ﬂQ
A
These values are extremely close to the exact values. Both amplitude errors are ‘}:

less than 1 percent, and the angular error of 82 is less than 1 deg.

3. Metheds Using Open-Loop Bode and & Plots

A & plot of the example for £ = -0.7 is shown in Fig. A-1. A small error
has been introduced into the solution from the use of the £ = -0.7 templates
because the actual value of & at Qb is -1/ \/5 = -0.707. The slopes which were

measured from this figure are “.-.5{:‘;
SN
‘:x"‘:.::“
e
Ak
A, = -17 db/dec R
“IAT
,.",‘\v-“,.
Ty
o = -129 deg/dec Ty
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Then from Eq 149

[-0.450 + 30.450]

JAT . 129
20 ~J 132

x M

-[0.0341 + j0.590] = 0.491 % 266 deg

This is within 1 percent of the correct amplitude and 2 deg of the correct
angle. The extremely small error in the amplitude must be considered fortuitous

as the errors in measuring the slopes will normally be higher than this.

For q; we must use a £ = -1 or Siggy plot, see Fig. A-1. The measured slope
from this plot is -830 db/dec, but the root is too close to the open-loop pole
to get an accurate value. A better estimate can be obtained by noting that the
two low frequency roots contribute about -40 db/dec, and the contribution of the

pole at -5 can be approximated by (Ref. 1, Table III-A)

5.10 — - r
20 s=g—s = -1020 db/dec
Therefore, A; = -1060 db/dec

and S1

_ 20(-5.10) _
K = —i-j‘—_wo = 0.0963

This is within 2 percent of the exact value.

Instead of using the & plot for S%, we might use the shifted Bode plot.
Shifting the imaginary axis 0.450 to the left so that %, and q3 are on the axis

puts the open-loop poles at 0.450, -0.550, and -4.550. The shifted diagram is
shown in Fig. A-2. The measured slopes are

A -19.2 db/dec

G AR
IETT
AL Gk,

1]

"

[
s LA

%3
7
At

-11.75 deg/dec

P o
=)
it

Q)

v -"\::

- (. LAY
o= % X ‘N‘,‘ .'} . "\“\“."\. ™ \{ ) .Hw.; LN .:-\-"_
DR A W ¢ ‘PR U " . o Y nY ;

e N A P R

A A PR N R JRE VAL WA NN "y Muw N

-t am e ."".,..,_\: LTSN .

.
2
g

»
;
LVl Gl W




£=-0.7

Odb for K=2.07

Amplitude f ==~
Ratio , db N s

0.1 1.0 10

=120

Phase
Angle, \
deg

-180

£=-0.7 \

~240 \\

>
Ay -‘1

S
.

Figure A-1. High-Gain § Plot
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Therefore,

2 . jo.450
K T~ 19.2 1175

20 ~J 1%

= 0.467 y 264.7 deg

This is an amplitude error of 5 percent and an angular error of less than 1 deg.

The Siggy of Fig. A-1 can alsc be used with the root decompositicn technique
to estimate Ag due to a gain change. For a 6-db increase in gain, &K/K =1,

root decomposition gave

29, = 0.10

fa, = -0.05 - jO.345

Therefore from Eq 154 s! 0.10

.,
[}

(P

l'; g
I

which is in error by 5 percent, and ot
S

ot

~y
ok
o

sﬁ 2 -0.05 - jO.345

re
1,260
PR3

0.348 y 262 deg

o
‘i .11/ B
AL
-t 1tz

i)

=

\ W Al ol B §
NAA 1“ '
rir e M

S e e and

»!t N

d which is a magnitude error of 29 percent and an angle error of lesc than 3 deg. N
& Lk, Method Using the Closed-Loop Bode Asymptotes :\‘_‘
The closed-loop Bode amplitude asymptote will be unity (0 db) for frequencies ;”’j
up to 0.637 and at that point it will break down at -4O db/dec. For gy, then, iy A
|-;‘ ‘,.
T
= 1 o
- by =R =hy = O L
s . -:,\
o and from Eq 162 e
2 : (065M% 151 2 270 de =
K 23(0.5450) . g R
':»j.:t

.

This is an error of 8 percent in magnitude and 5.5 deg in direction.
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From Eq 160 s}( = (5.10)(0.0156)
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This is an error of 16 percent.
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We will now consider the case when the gain is set so that there is a second-

order pole on the negative real axis. For this case the important parameters are:

YA
-y

=

=
I
ol

(7TV21 - 27) = 1.128

TRt
iy
'l‘l
PR TR

)

9 = 13(6+2V'2T) = 5.055 R
i

\.5.;:'-.
160

(6 - Vva1)

0.472 (second-order pole)

W=

4H =

1. Direct Calculation

The numerator and denominator polynomials and their derivatives are

ety

B = )+ 682+ 5s
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Then using Eq 130 for the numerator and denominator derivatives nrethod,

2 _ _2[ Ka, _ -2K
K K<82a 52) + (agﬁ/ase)]s_;_q2 'gq.z + 12

= - & (b9 - 9VED) = -0.246

S1 = [ K@ ] - K
© Lx(afds) + (3p/os) N

785 (TVET - 21) = 0.0537

Note that for this case the evaluation of the gain sensitivities only determine

two of the modal response coefficients,

i

1 =
Qq = SK -

2
-S%

Lo T e

Q22

AN

.
Il
g

18k

To evaluate the third coefficient, Q21 > we must make additional calculations.

For this case the easiest method is to use Eq 113, i.e.,

@+ = 0

.

.
-~

’
oA

'
'Y

=
>
7,
v I

or %, = -4 = -5

»
el
WM
—_

e The same result could be obtained from Eq 112, which for this case reduces to
o~

e

: -

o 9 - g5 (49 - 9V21)

L Poord

R (6 +2V2T) - 1 (6 - VaN)

%
" 3
wIil=

o 2 o
i - 755 (TVAT - 27) = -5}
o

|
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3.5934
0.0488
8.1219

P = %
-0.198
-0.247

-18.165
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100

z(p
2
55 = -0.246

1
S, = 0.0537

(Pk - 92)
-0.h72h7
0.52753
4.52753
-5.05505
-4.05505
-0.05505

(P - 4)

A

Fcr the second method of direct calculation, called the summation of terms

-1

-2

Px

We can set up a computation procedure similar to that used for the high-gain case,

D
0]
1
5

1
Pk
0
1
5

method, from Eq 137 we have
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2. Root-Locus Methods A

For the gain-perturbation method the g£2in can be increased to 2.070, for which e
p [3) 2 et

the root was previously determined to be -0.450 + jO.L50. Then from Eg 138 &ié

1.128[0.450 - j0.450 - 0.472]2

K 2.070 - 1.128

-0.2k2 + j0.0237 = 0.243 X 17h.k deg

Even though the ratio of the gains is more than 1.8, the estimate is within

2 percent of the correct amplitude and 6 deg of the right direction.
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Similarly for Q5
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e
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~1.128[5.099 - 5.055]
st = = 0.0526
2.070 - 1.128

A AL AL

v P VN
ot

4y

Al

This is a 2-percent error. 4

Using the phase-perturbation method for q,, we need a perturbation along a it

line midway between branches of the root locus. Selecting a perturb.tion of

0.25 at an angle of 45 deg gives a phase change of 14.6 deg. Therefore, from
Eq 139

£,
.
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] 0¥
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3573 38@ (i + J)]2 -
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k5.5 T
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AR
£ I‘-i".
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x

13l

This is an error of less than 1 percent.

For 9 @ perturbaticn of jO.1 was used. This gives a phase change of 63.7 deg. Ba
Then, N

357.3[-30.1] w3
_ = 0.09 o
63.7
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q?’? ety
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r

o« f(”'-
i g

This estimate has a large error, 68 percent, but this should not be surprising

S
PRl oA

o,
“p Ay

o
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because the perturbation selected was nearly twice as large as the distance from

‘
£

s
Pl

q; to the open-loop pole at -5. Under these conditions, higher order effects are

certain to be important.
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The root-lccus vector method, Eq 140, for this case reduces to simply
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3. Methods Using Open-Loop Bode and £ Plots

The £ = -1 or Siggy plot for this case and the slope of the Siggy plot are

shown in Fig. A-3.
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For g, Eq 150 becomes

-2(2.30) (20) (ap)?
K= )

s=-q2

Two methods of evaluating A, were used. The first was to measure the slope of

the Siggy (this is A1) and plot this slope versus frequency, see Fig. A-3. The
2

&

slope of this curve is then Ap. The value measured from Fig. A-3 was T3 db/dec

b
".

This gives

5
a2 Al

e

v

s2 = -0.281

B 4

which is in error by 14 percent.

The second method was to estimate the radius of curvature of the Siggy at a
frequency of 0.472. A radius of 30 db appeared to match the curvature of Fig. A-3.
The vertical scale of the graph is 20 db/in., ana the horizontal scale is
0.k dec/in. Following the procedure outlined in Section III gives

2
. [ 20 db/in. 1 B 5
f2 = (O.l& dec/in.) %0 do 83.3 db/dec
This gives a sensitivity of
2 .
S, = -0.247

a2l 5
YWX

which is amazingly close to the exact value (less than 1 percent error). The

4

B

PIRORI Ll A1

surprising agreement is obviously fortuitous as the method is certainly not that

accurate.

7
-

For q; we are again faced with the problem of being on an extremely steep

yl

portion of the Siggy. Rather than attempt to measure the slope, we will estimate

’
A &

it the same way we did for the high-gain case. The two low frequency .oots
contribute -40 db/dec and the root at -5 contributes

vy '."/;"u'
PP AP AN

ot L

s
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¥

v
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20(—2:95 \ _ _
_0<; 2 5) 1838 db/dec
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" Therefore A, = -1878 db/dec
1 - =-20(5.055) _
and SK = _W— = 0.0539
which is within 1 percent.
For the gain-perturbation method a gain change of -6 db (AK/K = -1/2) was
selected. It can be seen from Fig. A-3 that this change splits the second-order
pole into two first-order poles with
q = Oo-l 3, 0-85
Thus,
0.13 - 0.47 = -0.34
qu = or
0.8% - 0.47 = 0.36
Either value of qu could be used in Eq 154, but because neither value has a
theoretical advantage the average magnitude of the two was used. Therefore,
2
2 . (0.3)
Sy = T " -0.245
T2
This is less than 1 percent error, although the method is obviously not generally
that accurate.
For q; we make use of the fact that
Yoy = X
3 i k x5
.J" NP
"é so that with the gain change NN
& R
& LI
h~ "
s gy = 6-(0.13+0.85) = 5.0k Vsl
b ;5'13“5:":
:: N
Then ey
1 _ 5.0% - 5.055
h-:' SK = ___1—'_ 0 . 05 {::}E_'..‘:_&:
;:- -2 ‘l‘s." N
a Pratean
: This is an error of 44 percent. SR
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